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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

• Why?  (You might be asking. J)
– As you’ve seen, might be a useful way to develop solution to A
– Also, lower-bounds proofs

• We can’t find polynomial solutions to some problems.
We want to know if they are really exponential!
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MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

H
ow

?

Put fire under the Keg

Reduction



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺! = (𝑉!, 𝐸!) by:
• Adding in a source and sink to the set of nodes: 

– 𝑉! = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}
• Adding an edge from source to 𝐿 and from 𝑅 to 

sink:
– 𝐸! = 𝐸 ∪ 𝑢 ∈ 𝐿 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸!, 𝑐 𝑒 = 1
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Remember: need to show
1. How to map instance of MBM to 

MF (and back) - construction
2. A valid solution to MF instance is a 

valid solution to MBM instance
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Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨
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In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨 to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩 to 
Solutions of 𝑨

𝑌𝑋

Remember: need to show
1. How to map instance of A to B 

(and back)
2. Why solution to B was a valid 

solution to A



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨
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Then this is fast If this is fast



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨
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If this is slow Then this is slow



Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Same Again, Different Explanation

• Say we know these two things about problems A and  B:
– First, 𝑨 ≤ 𝑩
– Second, we’ve proven solving A is “slow” (using some lower-bounds proof)

• What can we say about B?
– Solving B must be “slow”. Why?

• Argument:
– Assume solving B could be “fast”
– We can solve A using B
– That’s a fast solution for A
– But one of our givens: it’s been proved A has no fast solutions.  Contradiction!
– Therefore assumption that B is “fast” is wrong.  Solving B must be “slow”.

• Remember we said:  A is no harder than B

• Big point: We can use known “slow” problems to show other problems are “slow”
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Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead

Or we 
could have 

solved A 
faster 

using B’s 
solver!



Peek Ahead to Where We’re Going
• We’re going to start looking at a set of intractable problems

– No known polynomial solutions have been found
– But none have proven to require exponential time either!

• We’ve found polynomial reductions between a group of these (called NP-
C), and we’ll see that
– None of them are “harder” than any of the others.
– If one has a polynomial solution, they all do.
– If there’s an exponential lower-bound proof for one, all are exponential.
– And there’s more to say about these ideas later!

• Important note about discussions that follow:
– Not showing how to solve any of these problems directly.
– Only showing how to reduce on problem to another!
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Party Problem
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Draw Edges between people who don’t get along
Find the maximum number of people who get along



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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Example
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Independent set of size 6



Generalized Baseball
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Generalized Baseball

19

Need to place defenders on 
bases such that every edge is 
defended

What’s the fewest number 
of defenders needed?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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Example
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Vertex cover of size 5



MaxIndSet≤/MinVertCov
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𝑂(𝑉)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝑽 𝑩

With 𝑂(𝑉) overhead



We need to build this Reduction
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𝐴 𝐵

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm 
for MinVertCov

Relate Solutions of MinVertCov to 
Solutions of MaxIndSet

𝑌𝑋

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Reduction Idea

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent Set Vertex Cover



Reduction Idea

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

25

Independent SetVertex Cover



MaxIndSet 𝑉-Time Reducible to MinVertCov
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time



Proof: ⇒
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because otherwise 𝑆 would not be an 
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆



Proof: ⇐
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a 
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆, 
No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set 



MaxIndSet 𝑉-Time Reducible to MinVertCov
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time



MaxIndSet 𝑉-Time Reducible to MinVertCov
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

We needed our proof to 
show that this works!

If there was a larger 
independent set, there 

would have been a smaller 
vertex cover!



MinVertCov 𝑉-Time Reducible to MinIndSet
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Using any Algorithm 
for MinIndSet

Take complement of solution

𝑌𝑋

O(V) Time

If Solving 𝑨 was 
always slow

Then this shows 
solving 𝑩 is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxVertCovIf Solving 𝑨 was 

always slow
Then this shows 
solving 𝑩 is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!

• (But we think they’re both slow)

– Both problems are NP-Complete
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Mid-class warm up:
What is a Decision Problem?

Your response is maybe:
Groan! Do we really need to know?

Why do we need to care?

Turns out that the math and theory 
on NP-complete problems starts with 

decision problems.



Max Independent Set
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Find the largest set of non-adjacent nodes



𝑘 Independent Set
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Is there a set of non-adjacent nodes of size 𝑘?



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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𝑘 Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• 𝑘 Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸) and a 
number 𝑘, determine whether there is an independent set 𝑺
of size 𝒌
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Min Vertex Cover
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Find the smallest set of 
nodes which covers every 
edge



𝑘 Vertex Cover

41

Is there a set of nodes of 
size 𝑘 which covers every 
edge?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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𝑘 Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• 𝑘 Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, 
determine whether there is a vertex cover 𝑪 of size 𝒌
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Problem Types

• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size 𝑘?

• Optimal Value Problems
– E.g. What’s the min k for k-vertex cover problem?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size 𝑘

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size 𝑘?
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If we can solve this

Then we can solve this

and this



Using a 𝑘-VertexCover decider to build a searcher

• Set 𝑖 = 𝑘 − 1
• Remove nodes (and incident edges) one at a time 
• Check if there is a vertex cover of size 𝑖
– If so, then that removed node was part of the 𝑘 vertex cover, 

set 𝑖 = 𝑖 − 1
– Else, it wasn’t
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Did I need this node to 
cover its edges to have 
a vertex cover of size k?



5 Vertex Cover (Decision)
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Is there a set of nodes of size 5
which covers every edge?

Yes!



4 Vertex Cover (Decision)
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Is there a set of nodes of size 4
which covers every edge?

No!



4 Vertex Cover (Decision)
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Is there a set of nodes of size 4
which covers every edge?

Yes!



3 Vertex Cover (Decision)
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Is there a set of nodes of size 3
which covers every edge?

No!



Reduction
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𝑘-VertexCover Solver 𝑘-VertexCover Decider

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Remove a node, etc…

Using any Algorithm 
for 𝑩

Relate Solutions of problem 𝑩 to 
Solutions of 𝑨

𝑌𝑋



P vs NP

• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• 𝑂(𝑛") for some number 𝑝
• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• 𝑂(𝑛") for some number 𝑝
• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃
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P

NP



𝑘-Independent Set is NP

• To show: Given a potential solution, can we 
verify it in 𝑂(𝑛-)? [𝑛 = 𝑉 + 𝐸]
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How can we verify it?
1. Check that it’s of size 𝑘? Takes 𝑂(𝑉)
2. Check that it’s an independent set?  Takes 𝑂(𝑉1)



NP-Hard
• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved 

in polynomial time, then all NP problems can 
be solved in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤! 𝐵
– 𝐴 ≤! 𝐵 means 𝐴 reduces to 𝐵 in polynomial 

time
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P

NP

NP-H
At least as 
“hard” as NP



NP-Hardness Reduction
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Any NP Problem Problem to show is NP-Hard

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛/)

Then this could be done 
in polynomial time

If This could be done in 
Polynomial time



NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier

– Show it is NP-Hard
• Give a reduction from another NP-H problem
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P

NP

NP-H

NP-C

We now just need a FIRST NP-Hard problem



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛/)

Then this could be done 
in polynomial time

If This could be done in 
polynomial time



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛/)

Then this cannot be 
done in polynomial time

If this cannot be done 
in polynomial time



Wrap Up

• Reductions used to show “hardness” relationships between 
problems

• Intractable problems often reduce to each other
• Starting to define “classes” of problems based on complexity 

issues
– P are problems that can be solved in polynomial time
– NP are problems where a solution can be verified in polynomial time
– NP-hard are problems that are at least as hard as anything in NP
– NP-complete are NP-hard problems that “stand or fall together”
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