
Today’s Keywords
• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
• Decision problems, verification problems
• NP, NP-Hard, NP-Compete
CLRS Readings
• Chapter 34

1

Spring 2020

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

• Why? (You might be asking. J)
– As you’ve seen, might be a useful way to develop solution to A
– Also, lower-bounds proofs

• We can’t find polynomial solutions to some problems.
We want to know if they are really exponential!

2

MacGyver’s Reduction

3

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon
battering ram

Solution for 𝑨

Aim duct at door,
insert keg

H
ow

?

Put fire under the Keg

Reduction

Maximum Bipartite Matching

4

Dog Lovers Dogs

Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺! = (𝑉!, 𝐸!) by:
• Adding in a source and sink to the set of nodes:

– 𝑉! = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}
• Adding an edge from source to 𝐿 and from 𝑅 to

sink:
– 𝐸! = 𝐸 ∪ 𝑢 ∈ 𝐿 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸!, 𝑐 𝑒 = 1

5

Remember: need to show
1. How to map instance of MBM to

MF (and back) - construction
2. A valid solution to MF instance is a

valid solution to MBM instance

𝑠
𝑡

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1

Bipartite Matching Reduction

6

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/10/1
0/1
1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1
1/1

1/1

Reduction

In General: Reduction

7

Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨 to
Instances of 𝑩

Using any Algorithm
for 𝑩

Map Solutions of problem 𝑩 to
Solutions of 𝑨

𝑌𝑋

Remember: need to show
1. How to map instance of A to B

(and back)
2. Why solution to B was a valid

solution to A

Worst-case lower-bound Proofs

reduces to

Algorithm for B

can be used
to make

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood,
matches

Keg cannon
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

Bipartite Matching Reduction

9

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/10/1
0/1
1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1
1/1

1/1

Reduction

Then this is fast If this is fast

Bipartite Matching Reduction

10

Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑠
𝑡2

2

1
3

0

0

0 2 3

1

1

1 2

2

1

2

1
1

Ford Fulkerson

𝑠
𝑡

1
11

11
1
111

1
1

1
1

1
1
1
1

𝑠
𝑡

0/1
0/1

1/1

1/10/1
0/1
1/11/10/1

1/1
1/1
1/1
1/1

1/1
1/1
1/1

1/1

Reduction

If this is slow Then this is slow

Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow

Same Again, Different Explanation

• Say we know these two things about problems A and B:
– First, 𝑨 ≤ 𝑩
– Second, we’ve proven solving A is “slow” (using some lower-bounds proof)

• What can we say about B?
– Solving B must be “slow”. Why?

• Argument:
– Assume solving B could be “fast”
– We can solve A using B
– That’s a fast solution for A
– But one of our givens: it’s been proved A has no fast solutions. Contradiction!
– Therefore assumption that B is “fast” is wrong. Solving B must be “slow”.

• Remember we said: A is no harder than B

• Big point: We can use known “slow” problems to show other problems are “slow”

12

Reduction Proof Notation

13

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏) time then 𝑩 also requires 𝛀(𝒇 𝒏) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛) overhead

Or we
could have

solved A
faster

using B’s
solver!

Peek Ahead to Where We’re Going
• We’re going to start looking at a set of intractable problems

– No known polynomial solutions have been found
– But none have proven to require exponential time either!

• We’ve found polynomial reductions between a group of these (called NP-
C), and we’ll see that
– None of them are “harder” than any of the others.
– If one has a polynomial solution, they all do.
– If there’s an exponential lower-bound proof for one, all are exponential.
– And there’s more to say about these ideas later!

• Important note about discussions that follow:
– Not showing how to solve any of these problems directly.
– Only showing how to reduce on problem to another!

14

Party Problem

15

Draw Edges between people who don’t get along
Find the maximum number of people who get along

Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆

16

Example

17

Independent set of size 6

Generalized Baseball

18

Generalized Baseball

19

Need to place defenders on
bases such that every edge is
defended

What’s the fewest number
of defenders needed?

Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the
minimum vertex cover 𝐶

20

Example

21

Vertex cover of size 5

MaxIndSet≤/MinVertCov

22

𝑂(𝑉)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏) time then 𝑩 also requires 𝛀(𝒇 𝒏) time
𝑨 ≤𝑽 𝑩

With 𝑂(𝑉) overhead

We need to build this Reduction

23

𝐴 𝐵

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm
for MinVertCov

Relate Solutions of MinVertCov to
Solutions of MaxIndSet

𝑌𝑋

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Reduction Idea

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

24

Independent Set Vertex Cover

Reduction Idea

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

25

Independent SetVertex Cover

MaxIndSet 𝑉-Time Reducible to MinVertCov

26

MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

Proof: ⇒
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

27

Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because otherwise 𝑆 would not be an
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆

Proof: ⇐
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

28

Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆,
No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set

MaxIndSet 𝑉-Time Reducible to MinVertCov

29

MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

MaxIndSet 𝑉-Time Reducible to MinVertCov

30

MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

We needed our proof to
show that this works!

If there was a larger
independent set, there

would have been a smaller
vertex cover!

MinVertCov 𝑉-Time Reducible to MinIndSet

31

𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet

Corollary

32

𝐴 𝐵

Reduction

Do nothing

Using any Algorithm
for MinIndSet

Take complement of solution

𝑌𝑋

O(V) Time

If Solving 𝑨 was
always slow

Then this shows
solving 𝑩 is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Corollary

33

𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm
for MaxVertCovIf Solving 𝑨 was

always slow
Then this shows
solving 𝑩 is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet

Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!

• (But we think they’re both slow)

– Both problems are NP-Complete

34

Mid-class warm up:
What is a Decision Problem?

Your response is maybe:
Groan! Do we really need to know?

Why do we need to care?

Turns out that the math and theory
on NP-complete problems starts with

decision problems.

Max Independent Set

36

Find the largest set of non-adjacent nodes

𝑘 Independent Set

37

Is there a set of non-adjacent nodes of size 𝑘?

Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆

38

𝑘 Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes
in 𝑆 share an edge

• 𝑘 Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸) and a
number 𝑘, determine whether there is an independent set 𝑺
of size 𝒌

39

Min Vertex Cover

40

Find the smallest set of
nodes which covers every
edge

𝑘 Vertex Cover

41

Is there a set of nodes of
size 𝑘 which covers every
edge?

Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the
minimum vertex cover 𝐶

42

𝑘 Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has
one of its endpoints in 𝐶

• 𝑘 Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘,
determine whether there is a vertex cover 𝑪 of size 𝒌

43

Problem Types

• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size 𝑘?

• Optimal Value Problems
– E.g. What’s the min k for k-vertex cover problem?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size 𝑘

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size 𝑘?

44

If we can solve this

Then we can solve this

and this

Using a 𝑘-VertexCover decider to build a searcher

• Set 𝑖 = 𝑘 − 1
• Remove nodes (and incident edges) one at a time
• Check if there is a vertex cover of size 𝑖
– If so, then that removed node was part of the 𝑘 vertex cover,

set 𝑖 = 𝑖 − 1
– Else, it wasn’t

45

Did I need this node to
cover its edges to have
a vertex cover of size k?

5 Vertex Cover (Decision)

46

Is there a set of nodes of size 5
which covers every edge?

Yes!

4 Vertex Cover (Decision)

47

Is there a set of nodes of size 4
which covers every edge?

No!

4 Vertex Cover (Decision)

48

Is there a set of nodes of size 4
which covers every edge?

Yes!

3 Vertex Cover (Decision)

49

Is there a set of nodes of size 3
which covers every edge?

No!

Reduction

50

𝑘-VertexCover Solver 𝑘-VertexCover Decider

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Remove a node, etc…

Using any Algorithm
for 𝑩

Relate Solutions of problem 𝑩 to
Solutions of 𝑨

𝑌𝑋

P vs NP

• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• 𝑂(𝑛") for some number 𝑝
• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• 𝑂(𝑛") for some number 𝑝
• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃

51

P

NP

𝑘-Independent Set is NP

• To show: Given a potential solution, can we
verify it in 𝑂(𝑛-)? [𝑛 = 𝑉 + 𝐸]

52

How can we verify it?
1. Check that it’s of size 𝑘? Takes 𝑂(𝑉)
2. Check that it’s an independent set? Takes 𝑂(𝑉1)

NP-Hard
• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved

in polynomial time, then all NP problems can
be solved in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤! 𝐵
– 𝐴 ≤! 𝐵 means 𝐴 reduces to 𝐵 in polynomial

time

53

P

NP

NP-H
At least as
“hard” as NP

NP-Hardness Reduction

54

Any NP Problem Problem to show is NP-Hard

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛/)

Then this could be done
in polynomial time

If This could be done in
Polynomial time

NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff

ALL NP problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP

• Give a polynomial time verifier

– Show it is NP-Hard
• Give a reduction from another NP-H problem

55

P

NP

NP-H

NP-C

We now just need a FIRST NP-Hard problem

NP-Completeness

56

Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛/)

Then this could be done
in polynomial time

If This could be done in
polynomial time

NP-Completeness

57

Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛/)

Then this cannot be
done in polynomial time

If this cannot be done
in polynomial time

Wrap Up

• Reductions used to show “hardness” relationships between
problems

• Intractable problems often reduce to each other
• Starting to define “classes” of problems based on complexity

issues
– P are problems that can be solved in polynomial time
– NP are problems where a solution can be verified in polynomial time
– NP-hard are problems that are at least as hard as anything in NP
– NP-complete are NP-hard problems that “stand or fall together”

58

