
Warm up:
Show that 𝑃 = 𝑁𝑃

Just Kidding!

But you’d get an A and not have 
to take the final if you could. J

Also, you’d be famous, and you’d 
win $1M US for solving one of the 

Millennium Prize problems.

Spring 2020



Today’s Keywords

• P vs NP
• NP Hard, NP Completeness
• 3SAT
• k-Independent Set
• k-Vertex Cover
• k-Clique

• Readings:  CLRS Chapter 34

2



Summary of Where We Are

• Focusing on “hard” problems, those that seem to be exponential
• Reductions used to show “hardness” relationships between 

problems
• Starting to define “classes” of problems based on complexity issues
– P are problems that can be solved in polynomial time
– NP are problems where a solution can be verified in polynomial time
– NP-hard are problems that are at least as hard as anything in NP
– NP-complete are NP-hard problems that “stand or fall together”
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Review: P And NP Summary

• P = set of problems that can be solved in polynomial time
• NP = set of problems for which a solution can be verified in 

polynomial time
– Note: this is a more “informal” definition, but it’s fine for CS4102
– See later slide for more info.

• P Í NP
• Open question: Does P = NP?



Review: Reduction

• A problem A can be reduced to another problem B if
– any instance of A can be “rephrased” to an instance of B, 

such that…
– the solution to which provides a solution to the instance 

of A
– (We sometimes call this rephrasing a transformation)

• Intuitively: If A reduces in polynomial time to B,
A is “no harder to solve” than B
– I.e. if B is polynomial, A is not exponential



Review: 
NP-Hard and NP-Complete

• If A is polynomial-time reducible to B, we denote
this A £p B

• Definition of NP-Hard and NP-Complete: 
– If all problems A Î NP are reducible to B , then B is NP-Hard
–We say B is NP-Complete if B is NP-Hard and B Î NP

• If B £p C and B is NP-Complete, C is also NP-Complete
–Can you explain why?  (Assume C is in NP.)



Before We Move On…

• Where we want to go next:
Are there any NP-Hard problems? Any NP-C problems? How do
we show a given problem is NP-C?

• But first, a moment to comment on some “subtleties”
– Pseudo-polynomial
– The “real” (i.e. formal) definition of NP
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Encodings, Input Sizes

• Our CLRS text takes a formal CS approach to these topics
– Formal languages, encodings, etc.
– pp. 1055-1061

• Here in CS4102 we’re OK being less formal
– So we’ve tried to “translate” or simplify a few things
– So we’re talking about this without those using approach 

shown on those pages!
• But one point about on encoding and input size…



Subtlety #1: Input Size and P

• Sometimes a problem seems to be in P but really isn't
• Example: finding if value n is a prime

– Just loop and do a mod.  That’s just Q(n), isn't it?
• Note that here “n” is not the count or number of data items.

– There's just one input item.
– But “n” is a value with a size that affects the execution time.
– The size is the number of bits, which is log(n)
– T(size) = n but size is log(n).
– T(size) = T(log n) = n = 10log n = 10size This is really an exponential algorithm!

• Be careful when “n” is not a count of data items but a value to be 
processed
– E.g. Dynamic programming problems (e.g. a table's dimension)
– We talked about pseudo-polynomial run-times in our lectures on DP



Subtlety #2: NP and Decision Problems

• We’ve said all this theory is based on reasoning about decision 
problems

• We’ve said NP are problems where you can check a solution in 
polynomial time

• But a solution to a decision problem is yes/no or true/false
– E.g. k-vertex-cover(G, k) à yes/no
– If we’re only given “yes”, how can we verify that solution against G 

and k without solving the problem?
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A Glimpse of Formal Definition of NP

• NP (nondeterministic polynomial time) is the set of decision 
problems that can be solved in polynomial time by a 
nondeterministic computer
– Think of a non-deterministic computer as a computer that magically “guesses” a 

what we’ve thought of as solution, then verifies it is correct
– Solution for original decision problem is yes/no, but this witness or certificate

is information that allows us to say “yes” or “no”
– If answer should be “yes” for an input, computer always guesses right witness
– Or, you can think of it as a parallel machine that generates all possible witnesses 

and says “yes” is any of those verifies

• For more, see Wikipedia or other source about these topics
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What’s Next?

• Where we want to go next:
– Are there any NP-Hard problems? Are there any NP-C problems?
– How do we show a given problem is NP-C?

• Reminder: why do we care?
– We know P Í NP
– But are they equal or is it a proper subset?
– In other words, is there a problem in NP that cannot be directly solved in 

polynomial time?
Do some problems in NP have an exponential lower bound?

– Is P = NP?  Or not?  (The big question!)
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Reminder (again)

• Definition of NP-Hard and NP-Complete: 
– If all problems A Î NP are reducible to B , then B is NP-Hard
–We say B is NP-Complete if:
• B is NP-Hard
• and B Î NP

• If B £p C and B is NP-Complete, C is also NP-Complete
–We’ll see why in two more slides
–As long as C Î NP. Otherwise C Î NP-hard.



Proving NP-Completeness

• What steps do we have to take to prove a problem B is NP-
Complete?
– Pick a known NP-Hard (or NP-Complete) problem A

• Assuming there is one!  (More later.)
– Reduce A to B

• Describe a transformation that maps instances of A to instances of B,
such that “yes” for instance of B = “yes” for instance of A

• Prove the transformation works
• Prove it runs in polynomial time

– Oh yeah, prove B Î NP



Order of the Reduction When Proving NP-Completeness

• To prove B is NP-c, show A £p B where A Î NP-Hard
– Why have the known NP-Hard problem “on the left”?  Shouldn’t it be the other 

way around? (No!)
• If A Î NP-Hard, then:    all NP problems £p A
• If you show A £p B, then:

any-NP-problem £p A £p B

• Thus any problem in NP can be reduced to B if the two transformations 
are applied in sequence
– And both are polynomial

• NP-c are “complete” because:  if A Î NP-c and A £p B, then B Î NP-c
– As long as both Î NP



“Consequences” of NP-Completeness

• NP-Complete is the set of “hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…
– …then every  NP-Complete problem can be solved in polynomial time…
– …and in fact every problem in NP can be solved in polynomial time (which 

would show P = NP)
– Or, prove an exponential lower-bound for any single NP-C problem, then 

every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've
proved that P = NP.  Retire rich & famous!



Can a Problem be NP-Hard but not NP-C?

• So, find a reduction and then try to prove B Î NP
– What if you can’t?

• Are there any problems B that are NP-hard but not NP-
complete?  This means:
– All problems in NP reduce to B .  (A known NP-Hard problem can be 

reduced to B.)
– But, B cannot be proved to be in NP

• Yes!  Some examples:
– Non-decision forms of known NP-Cs (e.g. TSP)
– The halting problem. (Transform a SAT expression to a Turing 

machine.)
– Others.



But You Need One NP-Hard First…
• If you have one NP-Hard problem, you can use the technique just 

described to prove other problems are NP-Hard and NP-c
– We need an NP-Hard problem to start this off

• The definition of NP-Hard was created to prove a point
– There might be problems that are at least as hard as “anything” (i.e. all NP 

problems)
• Are there really NP-complete problems?
• Cook-Levin Theorem:  The satisfiability problem (SAT) is NP-Complete.

• Stephen Cook proved this “directly”, from first principles, in 1971
• Proven independently by Leonid Levin (USSR)
• Showed that any problem that meets the definition of NP can be transformed in polynomial 

time to a CNF formula.
• Proof outside the scope of this course (lucky you)



More About The SAT Problem

• The first problem to be proved NP-Complete was satisfiability (SAT):
– Given a Boolean expression on n variables, can we assign values such that the 

expression is TRUE?
– Ex: ((x1®x2) Ú ¬((¬x1« x3) Ú x4)) Ù¬x2

• You might imagine that lots of decision problems could be expressed as 
a complex logical expression
– And Cook and Levin proved you were right!
– Proved the general result that any NP problem can be expressed this way



Conjunctive Normal Form (CNF)

• Even if the form of the Boolean expression is simplified, the 
problem may be NP-Complete
– Literal: an occurrence of a Boolean or its negation
– A Boolean formula is in conjunctive normal form, or CNF, if it is an AND 

of clauses, each of which is an OR of literals
• Ex: (x1 Ú ¬x2) Ù (¬x1 Ú x3 Ú x4) Ù (¬x5)

– 3-CNF: each clause has exactly 3 distinct literals
• Ex: (x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x3 Ú x4) Ù (¬x5 Ú x3 Ú x4)
• Notice: true if at least one literal in each clause is true

– Note: Arbitrary SAT expressions can be translated into CNF forms by 
introducing intermediate variables etc.



The 3-CNF Problem

• Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF 
Problem) is NP-Complete
– Proof: Also done by Cook (“part 2” of Cook’s theorem)
– But it’s not that hard to show SAT £p 3-CNF

• The reason we care about the 3-CNF problem is that it is 
relatively easy to reduce to others 
– Thus by proving 3-CNF is NP-Complete we can prove many seemingly 

unrelated problems are NP-Complete



Joining the Club
• Given one NP-c problem, others can join the club

– Prove that SAT reduces to another problem, and so on…

– Membership in NP-c grows…
– Classic textbook: Garey, M. and D. Johnson,

Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

SAT 3-CNF-SAT

CLIQUE

SUBSET-SUM

VERTEX-
COVER

HAM-
CYCLE

TSP



Reductions to Prove NP-C

• Next:
– A tour of how to prove some problems are NP-C
– 3-SAT is a good starting point!

– 𝑘-Independent Set
– 𝑘-Vertex Cover
– 𝑘-Clique
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Reminder about 3-SAT

• Shown to be NP-hard by Cook
• Given a 3-CNF formula (logical AND of clauses, each an OR of 

3 variables), is there an assignment of true/false to each 
variable to make the formula true (i.e., satisfy the formula)?
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

Clause
Variables

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT ≤! 𝑘-Independent Set
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𝑘-Independent Set is in NP

• Show: For any graph 𝐺:
– There is a short witness (“solution” for search problem) that 𝐺 has a 

𝑘-independent set
– The witness can be checked efficiently (in polynomial time)
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A B

C D

GF

H
J

K L

E

I

Graph 𝐺

Witness for 𝑮: 𝑆 = 𝐴, 𝐶, 𝐸, 𝐺, 𝐻, 𝐽
(nodes in the 𝑘-independent set)

Checking the witness:
• Check that 𝑆 = 𝑘
• Check that every edge is incident on at 

most one node in 𝑆

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑉 + 𝐸

Total time: 𝑂 𝐸 + 𝑉 = poly 𝑉 + 𝐸



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT ≤! 𝑘-Independent Set
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3-SAT ≤𝒑 𝒌-Independent Set
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

$𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

$𝑢

$𝑦̅𝑧

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Claim. There is a 𝑘-independent set in this graph if and only if 
there is a satisfying assignment

Let 𝑘 = number of clauses



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

$𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

$𝑢

$𝑦̅𝑧

Suppose there is a 𝑘-independent set 𝑆 in this graph 𝐺
• By construction of 𝐺, at most one node from each triangle is in 𝑆
• Since 𝑆 = 𝑘 and there are 𝑘 triangles, each triangle contributes one node
• If a variable 𝑥 is selected in one triangle, then �̅� is never selected in another 

triangle (since each variable is connected to its negation)
• There are no contradicting assignments, so can set variable chosen in each 

triangle to “true”; satisfying assignment by construction

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

$𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

$𝑢

$𝑦̅𝑧

Suppose there is a satisfying assignment to the formula
• At least one variable in each clause must be true
• Add the node to that variable to the set 𝑆
• There are 𝑘 clauses, so set 𝑆 has exactly 𝑘 nodes
• If we use 𝑥 in any clause, we will never use �̅�, so there are no edges among the 

nodes in 𝑆

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT ≤! 𝑘-independent set
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• Next example:  k-Vertex Cover

• Remember?
–We did the following reduction in an earlier slide set!

k-Independent Set ≤F k-Vertex Cover

–We just showed k-Independent Set is NP-C
–Therefore…. (you know, right?)
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Max Independent Set ≤# k-Vertex Cover

35

𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set 𝑘-vertex cover



𝑘-Vertex Cover is NP-Complete
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1. Show that it belongs to NP
– Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard
– Show 𝑘-independent set ≤! 𝑘-vertex cover



• Next example:  k-Clique
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𝑘-Clique Problem

• Clique: A complete subgraph 
• 𝒌-Clique problem: given a 

graph 𝐺 and a number 𝑘, is 
there a clique of size 𝑘?
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3-Clique

4-Clique



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤! 𝑘-clique

39



𝑘-Clique is in NP
• Show: For any graph 𝐺:

– There is a short witness (“solution”) that 𝐺 has a 𝑘-clique
– The witness can be checked efficiently (in polynomial time)

40Graph 𝐺

Witness for 𝑮: 𝑆 = 𝐵, 𝐷, 𝐸, 𝐹
(nodes in the 𝑘-clique)

Checking the witness:
• Check that 𝑆 = 𝑘
• Check that every pair of nodes in 𝑆 share 

an edge

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑘' = 𝑂( 𝑉 ')

Total time: 𝑂 𝑉 ' = poly 𝑉 + 𝐸

G
I

E

D

A

B

F

C

3-Clique

4-Clique

Suppose 𝑘 = 4



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤! 𝑘-clique
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3-SAT ≤𝒑 𝒌-Clique
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



𝑦 ̅𝑧
𝑧

3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

For each clause, introduce a node for each of its three variables
Add an edge from each node to all non-contradictory nodes in the other clauses (i.e., 
to all nodes that is not the negation of its own variable)

Claim. There is a 𝑘-clique in this graph if and only if there is a 
satisfying assignment

Let 𝑘 = number of clauses

𝑥

𝑦

𝑥

𝑢

(also do this for the other clauses, 
omitted due to clutter)

𝑧 �̅� 𝑢

�̅� $𝑦 ̅𝑧

$𝑦 𝑦



3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

Suppose there is a 𝑘-clique in this graph
• There are no edges between nodes for variables in the same clause, so 𝑘-clique must 

contain one node from each clause
• Nodes in clique cannot contain variable and its negation
• Nodes in clique must then correspond to a satisfying assignment

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 $𝑦𝑦

𝑢

𝑧 �̅� 𝑢

�̅� $𝑦 ̅𝑧



3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ &𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ &𝑦 ∨ ̅𝑧)

Suppose there is a satisfying assignment to the formula
• For each clause, choose one node whose value is true
• There are 𝑘 clauses, so this yields a collection of 𝑘 nodes
• Since the assignment is consistent, there is an edge between every pair of nodes, so this 

constitutes a 𝑘-clique

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 $𝑦𝑦

𝑢

𝑧 �̅� 𝑢

�̅� $𝑦 ̅𝑧



3-SAT ≤𝒑 𝒌-Clique
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤! 𝑘-clique
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Wrap Up and Reminders
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Why Prove NP-Completeness?

• Though nobody has proven that P ≠ NP, if you prove a problem 
NP-Complete, most people accept that it is probably exponential

• Therefore it can be important for you to prove that a problem is 
NP-Complete
– Don't need to try to come up perfect non-exponential algorithm
– Can instead work on approximation algorithms



What’s a poor salesperson to do?

http://xkcd.com/399/



Approximation Algorithms

• Look at first 3 pages of Ch. 35 of CLRS textbook
• Can we find an algorithm for problem A Î NP-C that:

– Runs in polynomial time
– Gets “near optimal” results

• Prove some bound on the algorithm’s correctness in terms of the true 
optimal result
– No worse that (some factor) of optimal
– “It’s not always right (best), but it’s guaranteed to be this close.”



General Comments

• At least 3000 problems have been shown to be NP-Complete
– That number is from a non-recent report, so we might say that 

counts is a weak lower-bound on the true number found
– https://en.wikipedia.org/wiki/List_of_NP-complete_problems

including some popular games

• Some reductions are profound, some are comparatively easy, 
many are easy once the key insight is given

https://en.wikipedia.org/wiki/List_of_NP-complete_problems


Other NP-Complete Problems

• Hamilton Path/Cycle, Traveling Salesperson
• Subset-sum: Given a set of integers, does there exist a subset that adds 

up to some target T ?
• 0-1 knapsack: when weights not just integers
• Graph coloring: can a given graph be colored with k colors such that no 

adjacent vertices are the same color?
• Etc… 



Review (Again)

• A problem B is NP-complete
– if it is in NP and it is NP-hard.

• A problem B is NP-hard
– if every problem in NP is reducible to B.

• A problem A is reducible to a problem B if 
– there exists a polynomial reduction function T such that

• For every string x, 
• if x is a yes input for A, then T(x) is a yes input for B
• if x is a no input for A, then T(x) is a no input for B. 
• T can be computed in polynomially bounded time. 



“Consequences” of NP-Completeness

• NP-Complete the set of the“hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…
– …then every  NP-Complete problem can be solved in polynomial time…
– …and in fact every problem in NP can be solved in polynomial time (which 

would show P = NP)
– Or, prove an exponential lower-bound for any single NP-C problem, then 

every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've
proved that P = NP.  Retire rich & famous!



What We Don’t Know: Open Questions

– Is it impossible to solve an NP-c problem in polynomial time?
• No one has proved an exponential lower bound for any problem in NP.
• But, most computer scientists believe such a lower bound exists for 

NP-c problems.

– Are all problems in NP tractable or intractable?
I.e., does P=NP or not?
• If someone found a polynomial solution to any

NP-c problem, we’d know P = NP.
• But, most computer scientists believe P≠ NP.


