Spring 2020

Warm up:

Just Kidding!

Show that $P=N P$
But you'd get an A and not have to take the final if you could. :)

Also, you'd be famous, and you'd win $\$ 1 \mathrm{M}$ US for solving one of the Millennium Prize problems.

Today's Keywords

- P vs NP
- NP Hard, NP Completeness
- 3SAT
- k-Independent Set
- k-Vertex Cover
- k-Clique
- Readings: CLRS Chapter 34

Summary of Where We Are

- Focusing on "hard" problems, those that seem to be exponential
- Reductions used to show "hardness" relationships between problems
- Starting to define "classes" of problems based on complexity issues
- P are problems that can be solved in polynomial time
- NP are problems where a solution can be verified in polynomial time
- NP-hard are problems that are at least as hard as anything in NP
- NP-complete are NP-hard problems that "stand or fall together"

Review: P And NP Summary

- $\mathbf{P}=$ set of problems that can be solved in polynomial time
- NP = set of problems for which a solution can be verified in polynomial time
- Note: this is a more "informal" definition, but it's fine for CS4102
- See later slide for more info.
- $\mathbf{P} \subseteq \mathbf{N P}$
- Open question: Does $\mathbf{P}=\mathbf{N P}$?

Review: Reduction

- A problem A can be reduced to another problem B if
- any instance of A can be "rephrased" to an instance of B, such that...
- the solution to which provides a solution to the instance of A
- (We sometimes call this rephrasing a transformation)
- Intuitively: If A reduces in polynomial time to B , A is "no harder to solve" than B
- I.e. if B is polynomial, A is not exponential

Review: NP-Hard and NP-Complete

- If A is polynomial-time reducible to B , we denote this $\mathrm{A} \leq_{\mathrm{p}} \mathrm{B}$
- Definition of NP-Hard and NP-Complete:
-If all problems $A \in N P$ are reducible to B, then B is NP-Hard
- We say B is NP-Complete if B is NP-Hard and $B \in \mathbf{N P}$
- If $\mathrm{B} \leq_{p} C$ and B is NP-Complete, C is also NP-Complete
-Can you explain why? (Assume C is in NP.)

Before We Move On...

- Where we want to go next:

Are there any NP-Hard problems? Any NP-C problems? How do we show a given problem is NP-C?

- But first, a moment to comment on some "subtleties"
- Pseudo-polynomial
- The "real" (i.e. formal) definition of NP

Encodings, Input Sizes

- Our CLRS text takes a formal CS approach to these topics
- Formal languages, encodings, etc.
- pp. 1055-1061
- Here in CS4102 we're OK being less formal
- So we've tried to "translate" or simplify a few things
- So we're talking about this without those using approach shown on those pages!
- But one point about on encoding and input size...

Subtlety \#1: Input Size and P

- Sometimes a problem seems to be in \mathbf{P} but really isn't
- Example: finding if value n is a prime
- Just loop and do a mod. That's just $\Theta(n)$, isn't it?
- Note that here " n " is not the count or number of data items.
- There's just one input item.
- But " n " is a value with a size that affects the execution time.
- The size is the number of bits, which is $\log (n)$
$-T($ size $)=n$ but size is $\log (\mathrm{n})$.
$-T($ size $)=T(\log n)=n=10^{\log n}=10^{\text {size }} \quad$ This is really an exponential algorithm!
- Be careful when " n " is not a count of data items but a value to be processed
- E.g. Dynamic programming problems (e.g. a table's dimension)
- We talked about pseudo-polynomial run-times in our lectures on DP

Subtlety \#2: NP and Decision Problems

- We've said all this theory is based on reasoning about decision problems
- We've said NP are problems where you can check a solution in polynomial time
- But a solution to a decision problem is yes/no or true/false
- E.g. k-vertex-cover(G, k) \rightarrow yes/no
- If we're only given "yes", how can we verify that solution against G and k without solving the problem?

A Glimpse of Formal Definition of NP

- NP (nondeterministic polynomial time) is the set of decision problems that can be solved in polynomial time by a nondeterministic computer
- Think of a non-deterministic computer as a computer that magically "guesses" a what we've thought of as solution, then verifies it is correct
- Solution for original decision problem is yes/no, but this witness or certificate is information that allows us to say "yes" or "no"
- If answer should be "yes" for an input, computer always guesses right witness
- Or, you can think of it as a parallel machine that generates all possible witnesses and says "yes" is any of those verifies
- For more, see Wikipedia or other source about these topics

What's Next?

- Where we want to go next:
- Are there any NP-Hard problems? Are there any NP-C problems?
- How do we show a given problem is NP-C?
- Reminder: why do we care?
- We know $\boldsymbol{P} \subseteq \boldsymbol{N P}$
- But are they equal or is it a proper subset?
- In other words, is there a problem in NP that cannot be directly solved in polynomial time?
Do some problems in NP have an exponential lower bound?
- Is P = NP? Or not? (The big question!)

Reminder (again)

- Definition of NP-Hard and NP-Complete:
- If all problems $\mathrm{A} \in \mathbf{N P}$ are reducible to B , then B is NP-Hard
-We say B is NP-Complete if:
- B is NP-Hard
- and $B \in \mathbf{N P}$
- If $B \leq_{p} C$ and B is NP-Complete, C is also NP-Complete
-We'll see why in two more slides
-As long as $C \in \mathbf{N P}$. Otherwise $C \in \mathbf{N P}$-hard.

Proving NP-Completeness

- What steps do we have to take to prove a problem B is NPComplete?
- Pick a known NP-Hard (or NP-Complete) problem A
- Assuming there is one! (More later.)
- Reduce A to B
- Describe a transformation that maps instances of A to instances of B, such that "yes" for instance of $B=$ "yes" for instance of A
- Prove the transformation works
- Prove it runs in polynomial time
- Oh yeah, prove B $\in \mathbf{N P}$

Order of the Reduction When Proving NP-Completeness

- To prove B is NP-c, show $A \leq_{p} B$ where $A \in \mathbf{N P}$-Hard
- Why have the known NP-Hard problem "on the left"? Shouldn't it be the other way around? (No!)
- If $A \in N P-H a r d$, then: all NP problems $\leq_{p} A$
- If you show $A \leq_{p} B$, then: any-NP-problem $\leq_{p} \mathrm{~A} \leq_{p} \mathrm{~B}$
- Thus any problem in NP can be reduced to B if the two transformations are applied in sequence
- And both are polynomial
- NP-c are "complete" because: if $A \in N P-c$ and $A \leq_{p} B$, then $B \in N P-c$
- As long as both $\in \mathbf{N P}$

"Consequences" of NP-Completeness

- NP-Complete is the set of "hardest" problems in NP, with these important properties:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Or, prove an exponential lower-bound for any single NP-C problem, then every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous!

Can a Problem be NP-Hard but not NP-C?

- So, find a reduction and then try to prove $B \in \mathbf{N P}$
- What if you can 't?
- Are there any problems B that are NP-hard but not NPcomplete? This means:
- All problems in NP reduce to B. (A known NP-Hard problem can be reduced to B.)
- But, B cannot be proved to be in NP
- Yes! Some examples:
- Non-decision forms of known NP-Cs (e.g. TSP)
- The halting problem. (Transform a SAT expression to a Turing machine.)
- Others.

But You Need One NP-Hard First. . .

- If you have one NP-Hard problem, you can use the technique just described to prove other problems are NP-Hard and NP-c
- We need an NP-Hard problem to start this off
- The definition of NP-Hard was created to prove a point
- There might be problems that are at least as hard as "anything" (i.e. all NP problems)
- Are there really NP-complete problems?
- Cook-Levin Theorem: The satisfiability problem (SAT) is NP-Complete.
- Stephen Cook proved this "directly", from first principles, in 1971
- Proven independently by Leonid Levin (USSR)
- Showed that any problem that meets the definition of NP can be transformed in polynomial time to a CNF formula.
- Proof outside the scope of this course (lucky you)

More About The SAT Problem

- The first problem to be proved NP-Complete was satisfiability (SAT):
- Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
- Ex: $\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$
- You might imagine that lots of decision problems could be expressed as a complex logical expression
- And Cook and Levin proved you were right!
- Proved the general result that any NP problem can be expressed this way

Conjunctive Normal Form (CNF)

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
- Literal: an occurrence of a Boolean or its negation
- A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
- Ex: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5}\right)$
- 3-CNF: each clause has exactly 3 distinct literals
- Ex: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5} \vee x_{3} \vee x_{4}\right)$
- Notice: true if at least one literal in each clause is true
- Note: Arbitrary SAT expressions can be translated into CNF forms by introducing intermediate variables etc.

The 3-CNF Problem

- Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NP-Complete
- Proof: Also done by Cook ("part 2" of Cook's theorem)
- But it's not that hard to show SAT $\leq_{p} 3$-CNF
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
- Thus by proving 3-CNF is NP-Complete we can prove many seemingly unrelated problems are NP-Complete

Joining the Club

- Given one NP-c problem, others can join the club
- Prove that SAT reduces to another problem, and so on...

- Membership in NP-c grows...
- Classic textbook: Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, 1979.

Reductions to Prove NP-C

- Next:
- A tour of how to prove some problems are NP-C
- 3-SAT is a good starting point!
- k-Independent Set
- k-Vertex Cover
$-k$-Clique

Reminder about 3-SAT

- Shown to be NP-hard by Cook
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), is there an assignment of true/false to each variable to make the formula true (i.e., satisfy the formula)?

k-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard

- Show 3-SAT $\leq_{p} k$-Independent Set

k-Independent Set is in NP

- Show: For any graph G :
- There is a short witness ("solution" for search problem) that G has a k-independent set
- The witness can be checked efficiently (in polynomial time)

Graph G

Witness for $\boldsymbol{G}: S=\{A, C, E, G, H, J\}$
(nodes in the k-independent set)
Checking the witness:

- Check that $|S|=k$
$O(k)=O(|V|)$
- Check that every edge is incident on at most one node in S
$O(|V|+|E|)$
Total time: $O(|E|+|V|)=\operatorname{poly}(|V|+|E|)$

k-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard

- Show 3-SAT $\leq_{p} k$-Independent Set

3-SAT $\leq_{p} \boldsymbol{k}$-Independent Set

3-SAT $\leq_{p} \boldsymbol{k}$-Independent Set

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

For each clause, construct a triangle graph with its three variables as nodes Add an edge between each node and its negation
Let $k=$ number of clauses
Claim. There is a k-independent set in this graph if and only if there is a satisfying assignment

3-SAT $\leq_{p} \boldsymbol{k}$-Independent Set

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

Suppose there is a k-independent set S in this graph G

- By construction of G, at most one node from each triangle is in S
- Since $|S|=k$ and there are k triangles, each triangle contributes one node
- If a variable x is selected in one triangle, then \bar{x} is never selected in another triangle (since each variable is connected to its negation)
- There are no contradicting assignments, so can set variable chosen in each triangle to "true"; satisfying assignment by construction

3-SAT $\leq_{p} \boldsymbol{k}$-Independent Set

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{aligned}
& x=\text { true } \\
& y=\text { false } \\
& z=\text { false } \\
& u=\text { true }
\end{aligned}
$$

Suppose there is a satisfying assignment to the formula

- At least one variable in each clause must be true
- Add the node to that variable to the set S
- There are k clauses, so set S has exactly k nodes
- If we use x in any clause, we will never use \bar{x}, so there are no edges among the nodes in S

3-SAT $\leq_{p} \boldsymbol{k}$-Independent Set

k-independent set

k-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard

- Show 3-SAT $\leq_{p} k$-independent set
- Next example: k-Vertex Cover
- Remember?
-We did the following reduction in an earlier slide set! k-Independent Set $\leq_{p} k$-Vertex Cover
-We just showed k-Independent Set is NP-C
-Therefore.... (you know, right?)

Max Independent Set $\leq_{p} k$-Vertex Cover

k-independent set

Reduction
k-vertex cover

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP

- Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard

- Show k-independent set $\leq_{p} k$-vertex cover
- Next example: k-Clique

k-Clique Problem

- Clique: A complete subgraph
- \boldsymbol{k}-Clique problem: given a graph G and a number k, is there a clique of size k ?

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show 3 -SAT $\leq_{p} k$-clique

k-Clique is in NP

- Show: For any graph G :
- There is a short witness ("solution") that G has a k-clique
- The witness can be checked efficiently (in polynomial time)

Graph G

Suppose $k=4$
Witness for \boldsymbol{G} : $S=\{B, D, E, F\}$
(nodes in the k-clique)
Checking the witness:

- Check that $|S|=k$

$$
O(k)=O(|V|)
$$

- Check that every pair of nodes in S share an edge

$$
O\left(k^{2}\right)=O\left(|V|^{2}\right)
$$

Total time: $O\left(|V|^{2}\right)=\operatorname{poly}(|V|+|E|)$

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show 3 -SAT $\leq_{p} k$-clique

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

3 -SAT $\leq_{\boldsymbol{p}} \boldsymbol{k}$-Clique

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

(also do this for the other clauses, omitted due to clutter)

For each clause, introduce a node for each of its three variables
Add an edge from each node to all non-contradictory nodes in the other clauses (i.e., to all nodes that is not the negation of its own variable)
Let $k=$ number of clauses
Claim. There is a k-clique in this graph if and only if there is a satisfying assignment

3 -SAT $\leq_{p} k$-Clique

Suppose there is a k-clique in this graph

- There are no edges between nodes for variables in the same clause, so k-clique must contain one node from each clause
- Nodes in clique cannot contain variable and its negation
- Nodes in clique must then correspond to a satisfying assignment

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

Suppose there is a satisfying assignment to the formula

- For each clause, choose one node whose value is true
- There are k clauses, so this yields a collection of k nodes
- Since the assignment is consistent, there is an edge between every pair of nodes, so this constitutes a k-clique

3 -SAT $\leq_{p} \boldsymbol{k}$-Clique

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show 3 -SAT $\leq_{p} k$-clique

Wrap Up and Reminders

Why Prove NP-Completeness?

- Though nobody has proven that $\mathbf{P} \neq \mathbf{N} \mathbf{P}$, if you prove a problem NP-Complete, most people accept that it is probably exponential
- Therefore it can be important for you to prove that a problem is NP-Complete
- Don't need to try to come up perfect non-exponential algorithm
- Can instead work on approximation algorithms

What's a poor salesperson to do?

http://xkcd.com/399/

Approximation Algorithms

- Look at first 3 pages of Ch. 35 of CLRS textbook
- Can we find an algorithm for problem $\mathrm{A} \in \mathbf{N P}-\mathbf{C}$ that:
- Runs in polynomial time
- Gets "near optimal" results
- Prove some bound on the algorithm's correctness in terms of the true optimal result
- No worse that (some factor) of optimal
- "It's not always right (best), but it's guaranteed to be this close."

General Comments

- At least 3000 problems have been shown to be NP-Complete
- That number is from a non-recent report, so we might say that counts is a weak lower-bound on the true number found
- https://en.wikipedia.org/wiki/List_of_NP-complete_problems including some popular games
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given

Other NP-Complete Problems

- Hamilton Path/Cycle, Traveling Salesperson
- Subset-sum: Given a set of integers, does there exist a subset that adds up to some target T ?
- 0-1 knapsack: when weights not just integers
- Graph coloring: can a given graph be colored with k colors such that no adjacent vertices are the same color?
- Etc...

Review (Again)

- A problem B is NP-complete
- if it is in NP and it is NP-hard.
- A problem B is NP-hard
- if every problem in NP is reducible to \mathbf{B}.
- A problem A is reducible to a problem B if
- there exists a polynomial reduction function T such that
- For every string x,
- if x is a yes input for A, then $T(x)$ is a yes input for B
- if x is a no input for A, then $T(x)$ is a no input for B.
- T can be computed in polynomially bounded time.

"Consequences" of NP-Completeness

- NP-Complete the set of the"hardest" problems in NP, with these important properties:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Or, prove an exponential lower-bound for any single NP-C problem, then every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous!

What We Don’ t Know: Open Questions

- Is it impossible to solve an NP-c problem in polynomial time?
- No one has proved an exponential lower bound for any problem in NP.
- But, most computer scientists believe such a lower bound exists for NP-c problems.
- Are all problems in NP tractable or intractable?
l.e., does $P=N P$ or not?
- If someone found a polynomial solution to any NP-c problem, we'd know P = NP.
- But, most computer scientists believe $P \neq N P$.

