GS4102 Algorithms

Spring 2020

Warm up: Just Kidding!
Show that P = NP

But you'd get an A and not have
to take the final if you could. ©

Also, you’d be famous, and you’d
win S1M US for solving one of the
Millennium Prize problems.

Today's Keywords

P vs NP

NP Hard, NP Completeness
3SAT

* k-Independent Set

e k-Vertex Cover

k-Cligue

e Readings: CLRS Chapter 34

summary of Where We Are

* Focusing on “hard” problems, those that seem to be exponential

* Reductions used to show “hardness” relationships between
problems

e Starting to define “classes” of problems based on complexity issues
— P are problems that can be solved in polynomial time
— NP are problems where a solution can be verified in polynomial time
— NP-hard are problems that are at least as hard as anything in NP
— NP-complete are NP-hard problems that “stand or fall together”

Review: P And NP Summary

P = set of problems that can be solved in polynomial time

NP = set of problems for which a solution can be verified in
polynomial time

— Note: this is a more “informal” definition, but it’s fine for CS4102
— See later slide for more info.

PC NP
* Open question: Does P = NP?

Review: Reduction

* A problem A can be reduced to another problem B if

— any instance of A can be “rephrased” to an instance of B,
such that...

— the solution to which provides a solution to the instance
of A

— (We sometimes call this rephrasing a transformation)

* Intuitively: If A reduces in polynomial time to B,
Ais “no harder to solve” than B

— l.e. if B is polynomial, A is not exponential

Review:

NP-Hard and NP-Complete

* If Ais polynomial-time reducible to B, we denote
thisA<,B

* Definition of NP-Hard and NP-Complete:
—If all problems A € NP are reducible to B, then B is NP-Hard
—We say B is NP-Complete if B is NP-Hard and B € NP

* If B<, Cand B is NP-Complete, Cis also NP-Complete
—Can you explain why? (Assume Cisin NP.)

Before \We Move On. ..

* Where we want to go next:
Are there any NP-Hard problems? Any NP-C problems? How do
we show a given problem is NP-C?

e But first, a moment to comment on some “subtleties”
— Pseudo-polynomial
— The “real” (i.e. formal) definition of NP

Encodings, Input Sizes

« Our CLRS text takes a formal CS approach to these topics
— Formal languages, encodings, etc.
— pp. 1055-1061

* Here in CS4102 we're OK being less formal

— So we've tried to “translate” or simplify a few things

— So we're talking about this without those using approach
shown on those pages!

 But one point about on encoding and input size...

Subtlety #1: Input Size and P

Sometimes a problem seems to be in P but really isn't

Example: finding if value n is a prime
— Just loop and do a mod. That’s just ©(n), isn't it?

Note that here “n” is not the count or number of data items.

— There's just one input item.

— But “n” is a value with a size that affects the execution time.

— The size is the number of bits, which is log(n)

— T(size) = n but size is log(n).

— T(size) = T(log n) = n = 109n = 10sz This is really an exponential algorithm!
Be careful when “n” is not a count of data items but a value to be
processed

— E.g. Dynamic programming problems (e.g. a table's dimension)

— We talked about pseudo-polynomial run-times in our lectures on DP

Subtlety #2: NP and Decision Problems

* We've said all this theory is based on reasoning about decision
problems

* We've said NP are problems where you can check a solution in
polynomial time

e But a solution to a decision problem is yes/no or true/false
— E.g. k-vertex-cover(G, k) =2 yes/no

— If we’re only given “yes”, how can we verify that solution against G
and k without solving the problem?

10

A Glimpse of Formal Definition of NP

* NP (nondeterministic polynomial time) is the set of decision
problems that can be solved in polynomial time by a

nondeterministic computer

— Think of a non-deterministic computer as a computer that magically “guesses” a
what we've thought of as solution, then verifies it is correct

— Solution for original decision problem is yes/no, but this witness or certificate
is information that allows us to say “yes” or “no”

— If answer should be “yes” for an input, computer always guesses right witness

— Or, you can think of it as a parallel machine that generates all possible witnesses
and says “yes” is any of those verifies

« For more, see Wikipedia or other source about these topics

11

What's Next”

* Where we want to go next:

— Are there any NP-Hard problems? Are there any NP-C problems?
— How do we show a given problem is NP-C?

« Reminder: why do we care?
— We know P NP

— But are they equal or is it a proper subset?

— In other words, is there a problem in NP that cannot be directly solved in
polynomial time?

Do some problems in NP have an exponential lower bound?
— Is P = NP? Or not? (The big question!)

12

Reminder (again)

* Definition of NP-Hard and NP-Complete:
—If all problems A € NP are reducible to B, then B is NP-Hard

—We say B is NP-Complete if:
* Bis NP-Hard
e and B € NP

* If B<, Cand B is NP-Complete, Cis also NP-Complete
—We'll see why in two more slides
—As long as C € NP. Otherwise C € NP-hard.

Proving NP-Completeness

* What steps do we have to take to prove a problem B is NP-
Complete?

— Pick a known NP-Hard (or NP-Complete) problem A
* Assuming there is one! (More later.)

— Reduce Ato B

* Describe a transformation that maps instances of A to instances of B,
such that “yes” for instance of B = “yes” for instance of A

* Prove the transformation works
* Prove it runs in polynomial time

— Oh yeah, prove B € NP

Order of the Reduction When Proving NP-Completeness

* To prove B is NP-c, show A <, B where A € NP-Hard

— Why have the known NP-Hard problem “on the left”? Shouldn’t it be the other
way around? (No!)

* If A e NP-Hard, then: all NP problems <, A

* If you show A <, B, then:
any-NP-problem <, A< B

* Thus any problem in NP can be reduced to B if the two transformations
are applied in sequence

— And both are polynomial

* NP-c are “complete” because: if A € NP-cand A<, B, then B € NP-c
— As long as both € NP

“Consequences” of NP-Completeness

« NP-Complete is the set of “hardest” problems in NP, with these
important properties:
— If any one NP-Complete problem can be solved in polynomial time...
— ...then every NP-Complete problem can be solved in polynomial time...

— ...and in fact every problem in NP can be solved in polynomial time (which
would show P = NP)

— Or, prove an exponential lower-bound for any sing/le NP-C problem, then
every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(/19) time, you've
proved that P = NP. Retire rich & famous!

Can a Problem be NP-Hard but not NP-C?

e So, find a reduction and then try to prove B € NP
— What if you can 't?

* Are there any problems B that are NP-hard but not NP-
complete? This means:

— All problems in NP reduce to B. (A known NP-Hard problem can be
reduced to B.)

— But, B cannot be proved to be in NP

* Yes! Some examples:
— Non-decision forms of known NP-Cs (e.g. TSP)

— The halting problem. (Transform a SAT expression to a Turing
machine.)

— Others.

But You Need One NP-Hard First. ..

If you have one NP-Hard problem, you can use the technique just
described to prove other problems are NP-Hard and NP-c
— We need an NP-Hard problem to start this off

The definition of NP-Hard was created to prove a point

— There might be problems that are at least as hard as “anything” (i.e. all NP
problems)

Are there really NP-complete problems?

Cook-Levin Theorem: The satisfiability problem (SAT) is NP-Complete.
 Stephen Cook proved this “directly”, from first principles, in 1971
* Proven independently by Leonid Levin (USSR)

* Showed that any problem that meets the definition of NP can be transformed in polynomial
time to a CNF formula.

* Proof outside the scope of this course (lucky you)

More About The SAT Problem

* The first problem to be proved NP-Complete was satisfiability (SAT):

— Given a Boolean expression on n variables, can we assign values such that the
expression is TRUE?

— Ex: ((x; =x5) v =((—x; © X3) Vv X4)) A—X,

* You might imagine that lots of decision problems could be expressed as
a complex logical expression

— And Cook and Levin proved you were right!
— Proved the general result that any NP problem can be expressed this way

Conjunctive Normal Form (CNF)

* Even if the form of the Boolean expression is simplified, the
problem may be NP-Complete
— Literal: an occurrence of a Boolean or its negation

— A Boolean formula is in conjunctive normal form, or CNF, if it is an AND
of clauses, each of which is an OR of literals
o Ex:(Xq VvV —X5) A (—=Xq V X3V Xg) A (—Xg)
— 3-CNF: each clause has exactly 3 distinct literals
 Ex: (X1 V=XV —X3) A (—X1 V X3V Xg) A (X5 V X3V Xg)
* Notice: true if at least one literal in each clause is true

— Note: Arbitrary SAT expressions can be translated into CNF forms by
introducing intermediate variables etc.

The 3-CNF Problem

 Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF
Problem) is NP-Complete

— Proof: Also done by Cook (“part 2” of Cook’s theorem)
— But it’s not that hard to show SAT < 3-CNF

* The reason we care about the 3-CNF problem is that it is
relatively easy to reduce to others

— Thus by proving 3-CNF is NP-Complete we can prove many seemingly
unrelated problems are NP-Complete

Joining the Club

* Given one NP-c problem, others can join the club
— Prove that SAT reduces to another problem, and so on...

SAT = 3-CNF-SAT | SUBSET-SUM

\

CLIQUE | ——| VERTEX- HAM- |—| TSP
COVER CYCLE

— Membership in NP-c grows...

— Classic textbook: Garey, M. and D. Johnson,
Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

Reductions to Prove NP-C

* Next:
— A tour of how to prove some problems are NP-C

— 3-SAT is a good starting point!
— k-Independent Set
— k-Vertex Cover

— k-Clique

23

Reminder about 3-SAT

* Shown to be NP-hard by Cook

* Given a 3-CNF formula (logical AND of clauses, each an OR of
3 variables), is there an assignment of true/false to each
variable to make the formula true (i.e., satisfy the formula)?

(xXVYVZ)OAXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

~

Clause

NV

Variables

x = true
y = false
z = false

u = frue
24

k-Independent Set is NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard
— Show 3-SAT <, k-Independent Set

25

k-Independent Set is in NP

 Show: For any graph G:

— There is a short witness (“solution” for search problem) that G has a
k-independent set

— The witness can be checked efficiently (in polynomial time)

H Witness for G: S = {A,C,E,G,H, |}
(nodes in the k-independent set)

Checking the witness:

* Checkthat |S| =k O0(k) =o0(V])
* Check that every edge is incident on at
most one node in S o(|V| + |E])

Graph G Total time: O(|E| + |V|) = poly(|V| + |E]|)

k-Independent Set is NP-Complete

1. Show that it belongs to NP v,

2. Show it is NP-Hard
— Show 3-SAT <, k-Independent Set

27

3-SAl <, k-Independent Set

3-SAT k-independent set

Map instances of problem *—o
(xVYVOAEVIVY)A@VyVZI) A to instances of B

polynomial time

Map solutions of problem

X = true B to solutions of 4 -
y = false

z = false polynomial time

u = true

polynomial-time reduction

28

3-SAl <, k-Independent Set

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

4

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Let Kk = number of clauses

Claim. There is a k-independent set in this graph if and only if
there is a satisfying assignment 29

3-SAl <, k-Independent Set

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

l(
x = true
y = false
z = false
u = true

Suppose there is a k-independent set S in this graph G
* By construction of G, at most one node from each triangle isin S
* Since |S| = k and there are k triangles, each triangle contributes one node
* If avariable x is selected in one triangle, then X is never selected in another
triangle (since each variable is connected to its negation)
* There are no contradicting assignments, so can set variable chosen in each

triangle to “true”; satisfying assignment by construction .

3-SAl <, k-Independent Set

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

.(
X = true
y = false
z = false
u = true

Suppose there is a satisfying assignment to the formula

At least one variable in each clause must be true
Add the node to that variable to the set S
There are k clauses, so set S has exactly k nodes

If we use x in any clause, we will never use x, so there are no edges among the
nodesin S

31

3-SAl <, k-Independent Set

3-SAT k-independent set

Map instances of problem

(xVyVZ)AxVIVY)A(uVyV7) A to instances of B w

polynomial time

Map solutions of problem
x = true B to solutions of 4

y = false
z = false polynomial time
u = true

polynomial-time reduction

32

k-Independent Set is NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard
— Show 3-SAT <, k-independent set

QO

33

* Next example: k-Vertex Cover

* Remember?
—We did the following reduction in an earlier slide set!
k-Independent Set <,, k-Vertex Cover

—We just showed k-Independent Set is NP-C
—Therefore.... (you know, right?)

34

Max Independent Set <, k-Vertex Gover

k-independent set

=
=

Map instances of problem

A to instances of B
0(1) time >

Map solutions of problem
B to solutions of A

O(|V]) time

Reduction

k-vertex cover

=
=

35

k-\Vertex Cover is NP-Complete

1. Show that it belongs to NP

— Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard

— Show k-independent set <,, k-vertex cover

36

* Next example: k-Clique

k-Cligue Problem

* Cligue: A complete subgraph

» k-Clique problem: given a
graph G and a number k, is

there a clique of size k? “%
S

38

k-Cligue is NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3-SAT <, k-clique

39

k-Cligue is in NP

e Show: For any graph G:

— There is a short witness (“solution”) that ¢ has a k-clique
— The witness can be checked efficiently (in polynomial time)
Suppose k = 4

Witness for G: S = {B,D,E,F}
(nodes in the k-clique)

Checking the witness:

« Checkthat |S| =k 0(k) =0(|V])
* Check that every pair of nodes in S share
an edge 0(k?) = 0(|V|?)

Graph G Total time: O(|V|?) = poly(|V]| + |E]) 0

k-Cligue is NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3-SAT <, k-clique

41

3-SAT <, k-Clique

3-SAT k-clique

Map instances of problem
(xVYVOAEVIVY)A@VyVZI) A to instances of B

polynomial time

Map solutions of problem

x = true B to solutions of A
y = false

z = false polynomial time
u = true

polynomial-time reduction

42

3-SAT <, k-Clique

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

(also do this for the other clauses,
omitted due to clutter)

Y |
For each clause, introduce a node for each of its three variables

Add an edge from each node to all non-contradictory nodes in the other clauses (i.e.,
to all nodes that is not the negation of its own variable)

Let kK = number of clauses
Claim. There is a k-clique in this graph if and only if there is a
satisfying assignment a3

3-SAT <, k-Clique

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

Suppose there is a k-clique in this graph
There are no edges between nodes for variables in the same clause, so k-clique must
contain one node from each clause
* Nodes in cligue cannot contain variable and its negation
* Nodes in cligue must then correspond to a satisfying assignment

44

3-SAT <, k-Clique

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

Suppose there is a satisfying assignment to the formula
* For each clause, choose one node whose value is true

* There are k clauses, so this yields a collection of k nodes
* Since the assignment is consistent, there is an edge between every pair of nodes, so this

constitutes a k-clique

45

3-SAT <, k-Clique

3-SAT k-clique
Map instances of problem
(xVYVOAEVIVY)A@VyVZI) A to instances of B
polynomial time .

Map solutions of problem

X = true B to solutions of 4
y = false

z = false polynomial time
u = true

polynomial-time reduction

46

k-Cligue is NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3-SAT <, k-clique

47

Wrap Up and Reminders

Why Prove NP-Completeness?

« Though nobody has proven that P # NP, if you prove a problem
NP-Complete, most people accept that it is probably exponential

« Therefore it can be important for you to prove that a problem is
NP-Complete

— Don't need to try to come up perfect non-exponential algorithm
— Can instead work on approximation algorithms

What's a poor salesperson to do”

BRUTE-FORCE
SOL-UT1ON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SEWUNG ON EBRAY:

o(1)

STILL WORKING
ON YOUR ROUTE?
\

~

SHUT THE
HEW VR

http://xkcd.com/399/

Approximation Algorithms

* Look at first 3 pages of Ch. 35 of CLRS textbook

« Can we find an algorithm for problem A € NP-C that:
— Runs in polynomial time
— Gets “near optimal” results

* Prove some bound on the algorithm’s correctness in terms of the true
optimal result

— No worse that (some factor) of optimal
— “It’s not always right (best), but it’s guaranteed to be this close.”

GGeneral Comments

* At least 3000 problems have been shown to be NP-Complete

— That number is from a non-recent report, so we might say that
counts is a weak lower-bound on the true number found

— https://en.wikipedia.org/wiki/List of NP-complete problems
including some popular games

* Some reductions are profound, some are comparatively easy,
many are easy once the key insight is given

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Other NP-Complete Problems

* Hamilton Path/Cycle, Traveling Salesperson

* Subset-sum: Given a set of integers, does there exist a subset that adds
up to some target T ?

* 0-1 knapsack: when weights not just integers

* Graph coloring: can a given graph be colored with k colors such that no
adjacent vertices are the same color?

* Etc...

Review (Again)

A problem B is NP-complete
— if itisin NP and it is NP-hard.

A problem B is NP-hard
— if every problem in NP is reducible to B.

A problem A is reducible to a problem B if

— there exists a polynomial reduction function T such that
* For every string x,
* if xis a yes input for A, then T(x) is a yes input for B
* if xisanoinput for A, then T(x) is a no input for B.
* T can be computed in polynomially bounded time.

“Consequences” of NP-Completeness

« NP-Complete the set of the“hardest” problems in NP, with these
important properties:
— If any one NP-Complete problem can be solved in polynomial time...
— ...then every NP-Complete problem can be solved in polynomial time...

— ...and in fact every problem in NP can be solved in polynomial time (which
would show P = NP)

— Or, prove an exponential lower-bound for any single NP-C problem, then
every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(/19) time, you've
proved that P = NP. Retire rich & famous!

What We Don’ t Know: Open Questions

— Is it impossible to solve an NP-c problem in polynomial time?
* No one has proved an exponential lower bound for any problem in NP.

* But, most computer scientists believe such a lower bound exists for
NP-c problems.

— Are all problems in NP tractable or intractable?
|.e., does P=NP or not?

* |If someone found a polynomial solution to any
NP-c problem, we’d know P = NP.

* But, most computer scientists believe P# NP.

