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Warm up
Show that finding the minimum of an 

unordered list requires Ω(𝑛) comparisons

Spring 2020 – Horton’s Slides



Find Min, Lower Bound Proof

Show that finding the minimum of an unordered 
list requires Ω(𝑛) comparisons

2

Suppose (toward contradiction) that there is an algorithm for 
Find Min that does fewer than %

&
= Ω(𝑛) comparisons. 

This means there is at least one “uncompared” element
We can’t know that this element wasn’t the min!
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Homeworks

• HW4 due 11pm Thursday, February 27, 2020
– Divide and Conquer and Sorting
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Midterm: March 4 (two weeks away!)
• Regrade Office Hours
– Fridays 2:30pm-3:30pm (Rice 210)
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Today’s Keywords

• Sorting
• Linear time Sorting
• Counting Sort
• Radix Sort
• Maximum Sum Continuous Subarray
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CLRS Readings

• Chapter 8
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Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort
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𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛&)

𝑂(𝑛&)

Optimal!

Optimal!

Optimal!



Speed Isn’t Everything
Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with multiple computers
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Mergesort
• Divide: 

– Break 𝑛-element list into two lists of ⁄% & elements

• Conquer:
– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable?
No No Yes!

(usually)



Merge
• Combine: Merge sorted sublists into one sorted list
• We have: 

– 2 sorted lists (𝐿+, 𝐿&)
– 1 output list (𝐿567)

While (𝐿+ and 𝐿& not empty):
If 𝐿+ 0 ≤ 𝐿&[0]: 

𝐿567.append(𝐿+.pop())
Else: 

𝐿567.append(𝐿&.pop())
𝐿567.append(𝐿+)
𝐿567.append(𝐿&)

Stable:
If elements are 
equal, leftmost 
comes first
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Mergesort
• Divide: 

– Break 𝑛-element list into two lists of ⁄% & elements

• Conquer:
– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable? Parallelizable?
No No Yes!

(usually)
Yes!
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Mergesort

• Divide: 
– Break 𝑛-element list into two lists of ⁄% & elements

• Conquer:
– If 𝑛 > 1:

• Sort each sublist recursively
– If 𝑛 = 1:

• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list
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Parallelizable:
Allow different 
machines to work 
on each sublist



Mergesort (Sequential)

𝑛 total / level

log& 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛
2
) + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Run Time: Θ(𝑛 log 𝑛)



Mergesort (Parallel)

𝑛

𝑇 𝑛 = 𝑇(
𝑛
2
) + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Run Time: Θ(𝑛)

Done in Parallel
𝑛
2

𝑛
4

1



Quicksort
Run Time?
Θ(𝑛 log 𝑛)

(almost always)
Better constants 
than Mergesort

In Place? Adaptive? Stable?
kinda No! No

Parallelizable?
Yes!

Idea: pick a partition element, recursively sort two 
sublists around that element
• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

Uses stack for 
recursive calls



Bubble Sort

Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted
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8 5 7 9 12 10 1 2 4 3 6 11

5 8 7 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11



Bubble Sort
Run Time?
Θ(𝑛&)

Constants worse 
than Insertion Sort

In Place? Adaptive?
Yes Kinda

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

“Compared to straight 
insertion […], bubble sorting 
requires a more complicated 
program and takes about 
twice as long!” –Donald 
Knuth



Bubble Sort is “almost” Adaptive

Idea: March through list, swapping adjacent 
elements if out of order
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Only makes one “pass”

2 3 4 5 6 7 8 9 10 11 12 1

After one “pass”

2 3 4 5 6 7 8 9 10 11 1 12

Requires 𝑛 passes, thus is 𝑂(𝑛&)



Bubble Sort
Run Time?
Θ(𝑛&)

Constants worse 
than Insertion Sort

In Place? Adaptive? Stable?
Yes! Kinda

Not really
Yes

Parallelizable?
No

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

"the bubble sort seems to have nothing to 
recommend it, except a catchy name and 
the fact that it leads to some interesting 
theoretical problems” –Donald Knuth, The 
Art of Computer Programming



Insertion Sort

Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix



Insertion Sort
Run Time?

Θ(𝑛&)
(but with very small 

constants)
Great for short lists!In Place? Adaptive?

Yes! Yes

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element



Insertion Sort is Adaptive

Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

Only one comparison needed per element! Runtime: 𝑂(𝑛)



Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element Θ(𝑛&)

(but with very small 
constants)

Great for short lists!



Insertion Sort is Stable

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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3 5 7 8 10 12 10’ 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 10’ 12 2 4 6 1 11

3 5 7 8 10 10’ 12 2 4 6 1 11

Sorted Prefix

The “second” 10 will stay to the right



Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

Parallelizable?
No

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element

Online?
Yes

Can sort a list as it is received, 
i.e., don’t need the entire list 
to begin sorting“All things considered, it’s 

actually a pretty good sorting 
algorithm!” –Nate Brunelle

Θ(𝑛&)
(but with very small constants)

Great for short lists!



Heap Sort
• Idea: Build a Heap, repeatedly extract max element 

from the heap to build sorted list Right-to-Left

25

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse 
than Quick Sort

In Place?
Yes!

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left

When removing an element 
from the heap, move it to the 
(now unoccupied) end of the list



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list
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10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

32

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list
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9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

34

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

35

7

4 6

3 1 5 2

7 4 6 3 1 5 2 8 9 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7



Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse 
than Quick Sort

In Place? Adaptive? Stable?
Yes! No No

Parallelizable?
No

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left



Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort
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𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛&)

𝑂(𝑛&)

Optimal!

Optimal!

Optimal!



Sorting in Linear Time

• Sometimes we can sort in linear time!
– Wait, what?  We used decision trees to prove sorting is Ω(𝑛 log𝑛)
– Remember: proof assumed key-comparison was our basic operation

• Thus, if we can do something more than just compare two keys, then…
– Similar situation:  binary search is optimal, but hashing can be faster

• Possible approach: make some sort of assumption about the contents of the list
– Small number of unique values
– Small range of values
– Etc.

• Cannot be comparison-based!  We see examples that use a key’s numeric value.
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Counting Sort

39

• Starting point: Determine how often each element occurs

Range is [1, 𝑘] (here [1,6])
make an array 𝐶 of size 𝑘
populate with counts of each value

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

2 0 2 1 0 3

1 2 3 4 5 6

𝐶 =

For 𝑖 in 𝐿:
+ +C 𝐿 𝑖

1.

𝐿 =

We could easily use 𝐶 to produce a list of sorted key values in a list 𝐵.
Do you see how?  (Discuss.)
That’s sorting, isn’t it, so that’s all we need, right?  (Answer: no.)

2.

Note: if range is [0,k] then
C will be zero-index.



Counting Sort

40

• First Idea: Use index and Count to create output list of key values
3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

2 0 2 1 0 3

1 2 3 4 5 6

𝐶 =𝐿 =

b_idx = 1 // next position in output list B
for i = 1 to len(C):      // look at count for next value in range

for j = 1 to C[i]: // for each time i occurs...
B[b_idx] = i // ...put value i into output list
b_idx = b_idx + 1

Complexity:  Θ(max 𝑛, 𝑘 ) = Θ(𝑛 + 𝑘)

Priority Associated Data

2 Data, 1st with pri=2

1 Data, 1st with pri=1

2 Data, 2nd with pri=2

1 Data, 2nd with pri=1

… …

What’s wrong with this approach?
• Data associated with keys? Stable?



Counting Sort
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• Better Idea: Count how many things are ≤ each element

Range is [1, 𝑘] (here [1,6])
make an array 𝐶 of size 𝑘
populate with counts of each value

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

2 0 2 1 0 3

1 2 3 4 5 6

𝐶 =

For 𝑖 in 𝐿:
+ +C 𝐿 𝑖

1.

𝐿 =

Take “running sum” of 𝐶
to count things less than each value

2 2 4 5 5 8

1 2 3 4 5 6

𝐶 =

For 𝑖 = 2 to len(𝐶):
𝐶 𝑖 = 𝐶 𝑖 − 1 + 𝐶[𝑖]

2.

running sum

To sort: last item of 
value 3 goes at index 4



Counting Sort
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• Idea: Count how many things are ≤ each element

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8
𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵.

Put element from L there.
Decrement that position of C.

Why? If earlier element in L with
same value is found, placed right before it.

2 2 4 5 5 8

1 2 3 4 5 6

𝐶 =

Last item of value 6 
goes at index 8

1 2 3 4 5 6 7 8
𝐵 =

For 𝑖 = len(𝐿) downto 1:
𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖
𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

7

6



Counting Sort
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• Idea: Count how many things are less than each element

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8
𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵.

Put element from L there.
Decrement that position of C.

Why? If earlier element in L with
same value is found, placed right before it.

2 2 4 5 5 7

1 2 3 4 5 6

𝐶 =

Last item of value 1 
goes at index 2

6

1 2 3 4 5 6 7 8
𝐵 =

For 𝑖 = len(𝐿) downto 1:
𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖
𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

1

1

Run Time: 𝑂 𝑛 + 𝑘
Memory: 𝑂 𝑛 + 𝑘
Is this stable?  Why or why not?



Counting Sort

• Why not always use counting sort?
• For 64-bit numbers, requires an array of length 2MN > 10+O

– 5 GHz CPU will require > 116 years to initialize the array
– 18 Exabytes of data

• Total amount of data that Google has (?)

44

One Exabyte = 10+P bytes
1 million terabytes (TB)
1 billion gigabytes (GB)

100,000 x Library of Congress (print)



12 Exabytes

45https://en.wikipedia.org/wiki/Utah_Data_Center



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

46

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

Place each element into 
a “bucket” according to 
its 1’s place

999018
255
555
245

103
323
823
113

512

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

Which stable sort would you 
choose?
Read CLRS, Section 8.3!



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

47

Place each element into 
a “bucket” according to 
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555245

121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

48

Place each element into 
a “bucket” according to 
its 100’s place

999
255
555245

121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

901
999

800
801
823

512
555401323245

255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

Run Time: 𝑂 𝑑 𝑛 + 𝑏
𝑑 = digits in largest value
𝑏 = base of representation



Maximum Sum Continuous Subarray Problem

The maximum-sum subarray of a given array of integers 𝐴 is the 
interval [𝑎, 𝑏] such that the sum of all values in the array 
between 𝑎 and 𝑏 inclusive is maximal. 
Given an array of 𝑛 integers (may include both positive and 
negative values), give a 𝑂(𝑛 log 𝑛) algorithm for finding the 
maximum-sum subarray.

49



Divide and Conquer Θ(𝑛 log 𝑛)

50

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
Recursively 

Solve on Right



Divide and Conquer Θ(𝑛 log 𝑛)

51

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum 
that ends here

+ Largest sum 
that starts here



Divide and Conquer Θ(𝑛 log 𝑛)

52

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of 
Left, Right, Center

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛



Divide and Conquer Summary

• Divide
– Break the list in half

• Conquer
– Find the best subarrays on the left and right

• Combine
– Find the best subarray that “spans the divide”
– I.e. the best subarray that ends at the divide concatenated with the 

best that starts at the divide

Typically multiple subproblems.
Typically all roughly the same size.



Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

54



MSCS Divide and Conquer Θ(𝑛 log 𝑛)

def MSCS(list):
if list.length < 2:

return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:

subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution

55



Types of “Divide and Conquer”

• Divide and Conquer
– Break the problem up into several subproblems of roughly equal size, 

recursively solve
– E.g. Karatsuba, Closest Pair of Points, Mergesort…

• Decrease and Conquer
– Break the problem into a single smaller subproblem, recursively solve
– E.g. Impossible Missions Force (Double Agents), Quickselect, Binary 

Search



Pattern So Far

• Typically looking to divide the problem by some fraction 
(½, ¼ the size)

• Not necessarily always the best!
– Sometimes, we can write faster algorithms by finding unbalanced

divides.



Chip and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
– Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
– New best on the left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
22



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
25



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the cut
17



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the cut
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

13 Find Largest 
sum ending at 

the cut
12



Chip and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
– Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
– New best on the left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



Was unbalanced better?

• Old:
– We divided in Half
– We solved 2 different problems:

• Find the best overall on BOTH the left/right
• Find the best which end/start on BOTH the left/right respectively

– Linear time combine
• New:
– We divide by 1, n-1
– We solve 2 different problems:

• Find the best overall on the left ONLY 
• Find the best which ends on the left ONLY

– Constant time combine

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇 𝑛 = 1𝑇 𝑛 − 1 + 1

𝑇 𝑛 = Θ(𝑛 log 𝑛)

𝑇 𝑛 = Θ(𝑛)

YES



MSCS Problem - Redux

• Solve in 𝑂(𝑛) by increasing the problem size by 1 each time.
• Idea: Only include negative values if the positives on both sides 

of it are “worth it”



Θ(𝑛) Solution

69

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5



Θ(𝑛) Solution

70

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13



Θ(𝑛) Solution

71

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 9



Θ(𝑛) Solution

72

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 12



Θ(𝑛) Solution

73

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19



Θ(𝑛) Solution

74

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 4



Θ(𝑛) Solution

75

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 14



Θ(𝑛) Solution

76

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 0



Θ(𝑛) Solution

77

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 17



Θ(𝑛) Solution

78

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25


