

<u>Warm up</u>

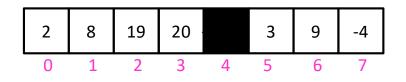
Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Find Min, Lower Bound Proof

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Suppose (toward contradiction) that there is an algorithm for Find Min that does fewer than $\frac{n}{2} = \Omega(n)$ comparisons.

This means there is at least one "uncompared" element We can't know that this element wasn't the min!



2

Homeworks

- HW4 due 11pm Thursday, February 27, 2020
 - Divide and Conquer and Sorting
 - Written (use LaTeX!)
 - Submit BOTH a pdf and a zip file (2 separate attachments)
- Midterm: March 4 (two weeks away!)
- Regrade Office Hours

- Fridays 2:30pm-3:30pm (Rice 210)

Today's Keywords

- Sorting
- Linear time Sorting
- Counting Sort
- Radix Sort
- Maximum Sum Continuous Subarray

CLRS Readings

• Chapter 8

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

Important properties of sorting algorithms:

- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with multiple computers

Mergesort

• Divide:

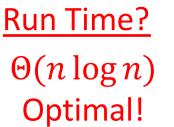
- Break *n*-element list into two lists of n/2 elements

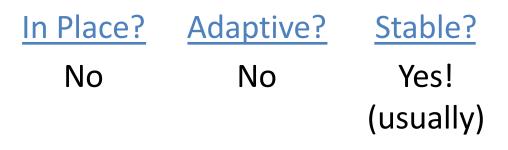
• Conquer:

- If n > 1: Sort each sublist recursively
- If n = 1: List is already sorted (base case)

• Combine:

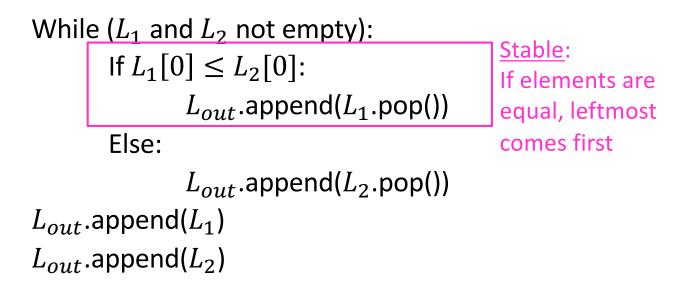
- Merge together sorted sublists into one sorted list





Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1 , L_2)
 - -1 output list (L_{out})



Mergesort

Divide: Break n-element list into two lists of ⁿ/₂ elements Conquer: If n > 1: Sort each sublist recursively If n = 1: List is already sorted (base case) Combine: Merge together sorted sublists into one sorted list In Place? Adaptive? Stable? Parallelizable

In Place?	Adaptive?	Stable?	Parallelizable?
No	No	Yes!	Yes!
		(usually)	

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements

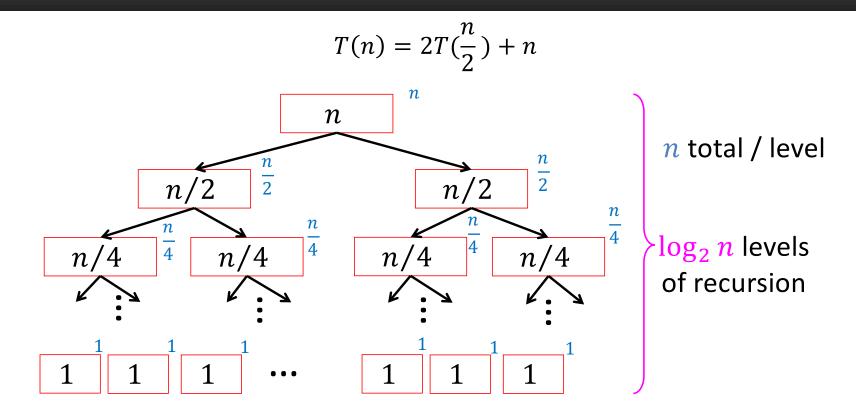
- Conquer:
 - If n > 1:
 - Sort each sublist recursively
 - If n = 1:
 - List is already sorted (base case)

• Combine:

- Merge together sorted sublists into one sorted list

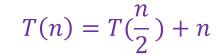
Parallelizable: Allow different machines to work on each sublist

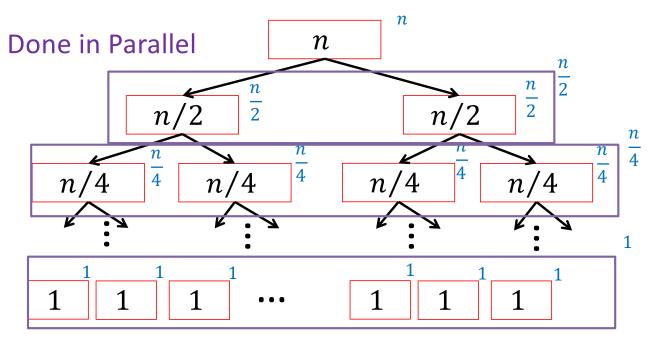
Mergesort (Sequential)



Run Time: $\Theta(n \log n)$

Mergesort (Parallel)





Run Time: $\Theta(n)$

Quicksort

Idea: pick a partition element, recursively sort two sublists around that element

- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

 $\Theta(n \log n)$ (almost always) Better constants than Mergesort

Run Time?

In Place?	Adaptive?	Stable?	Parallelizable?
kinda	No!	No	Yes!
Uses stack fo	r		
recursive call	S		

Bubble Sort

Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

8	5	7	9	12	10	1	2	4	3	6	11
5	8	7	9	12	10	1	2	4	3	6	11
5	7	8	g	12	10	1	2	4	3	6	11
	,	0	5	ΤZ	10	1	2	+	5	0	
5	7	8	9	12	10	1	2	4	3	6	11

Bubble Sort

• Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

 $\frac{\text{Run Time?}}{\Theta(n^2)}$ Constants worse
than Insertion Sort

Yes

Kinda

Adaptive?

"Compared to straight insertion [...], bubble sorting requires a more complicated program and takes about twice as long!" –Donald Knuth

Bubble Sort is "almost" Adaptive

Idea: March through list, swapping adjacent elements if out of order

1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12

Only makes one "pass"

2	3	4	5	6	7	8	9	10	11	12	1	
---	---	---	---	---	---	---	---	----	----	----	---	--

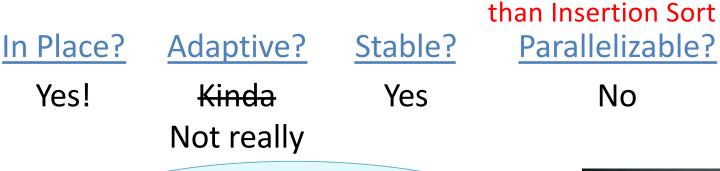
After one "pass"

2 3 4 5 6	7 8 9	10 11 1 12
-----------	-------	------------

Requires n passes, thus is $O(n^2)$

Bubble Sort

Idea: March through list, swapping adjacent elements if out of order, repeat until sorted



"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" – Donald Knuth, The Art of Computer Programming

Run Time?

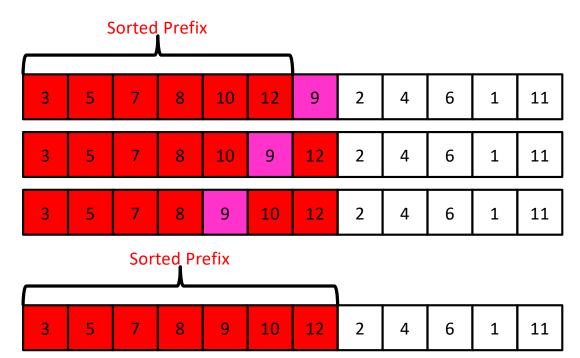
 $\Theta(n^2)$

Constants worse

No

Insertion Sort

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

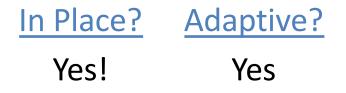


19

Insertion Sort

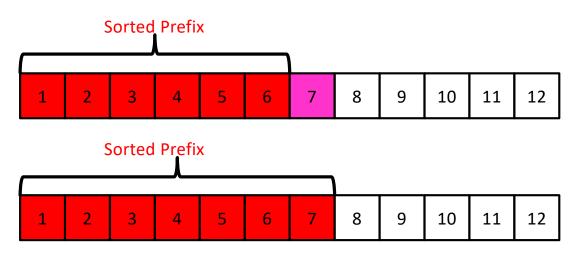
• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

 $\frac{\text{Run Time?}}{\Theta(n^2)}$ (but with very small constants)
Great for short lists!



Insertion Sort is Adaptive

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



Only one comparison needed per element! Runtime: O(n)

Insertion Sort

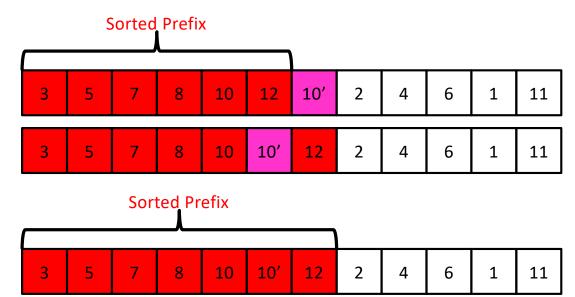
• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

 $\frac{\text{Run Time?}}{\Theta(n^2)}$ (but with very small constants)
Great for short lists!

In Place?	Adaptive?	Stable?
Yes!	Yes	Yes

Insertion Sort is Stable

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



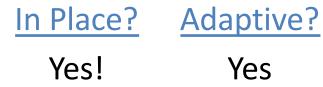
The "second" 10 will stay to the right

Insertion Sort

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Yes

Run Time? $\Theta(n^2)$ (but with very small constants) Great for short lists!



Stable? Yes

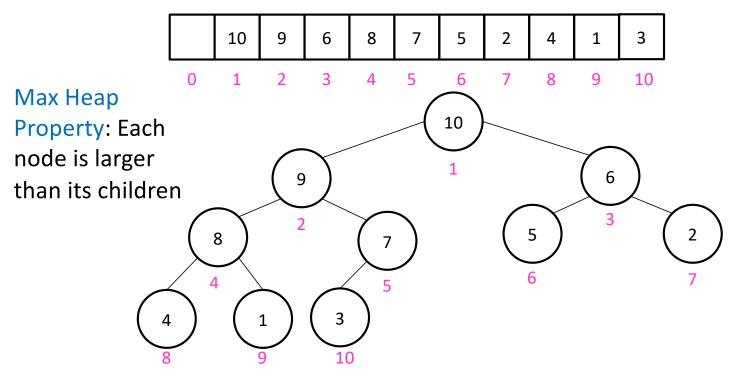
No

Parallelizable?

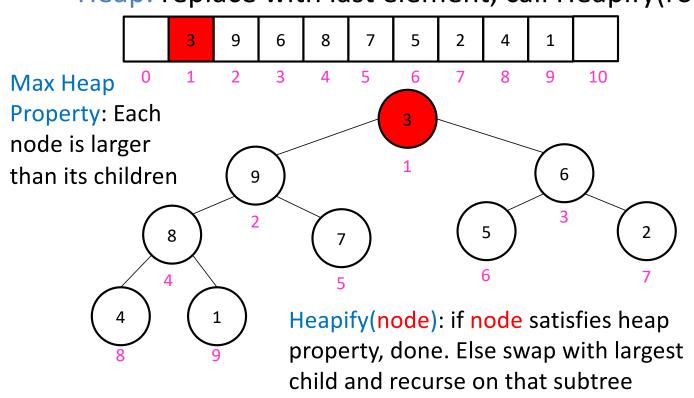
Can sort a list as it is received. i.e., don't need the entire list to begin sorting

Online? Yes

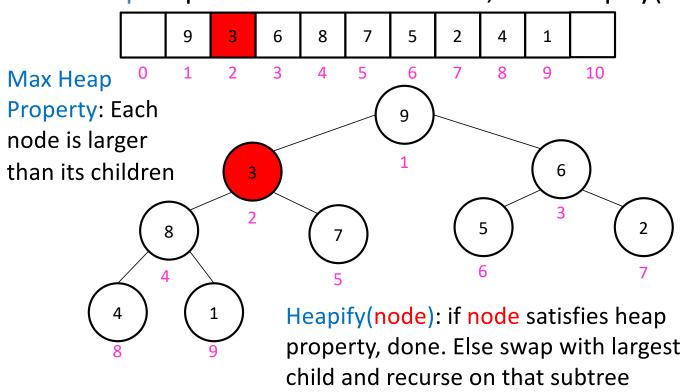
• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left



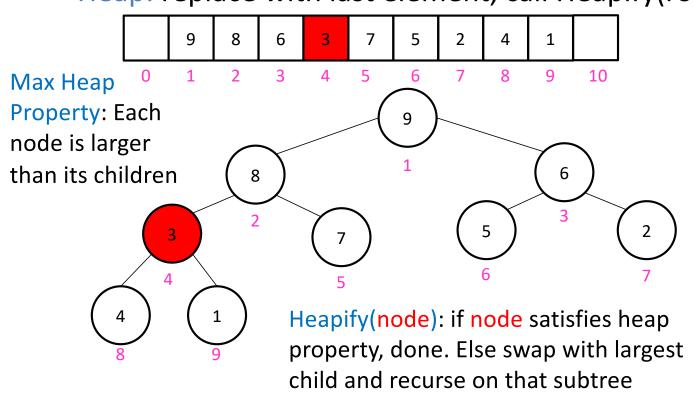
 Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)



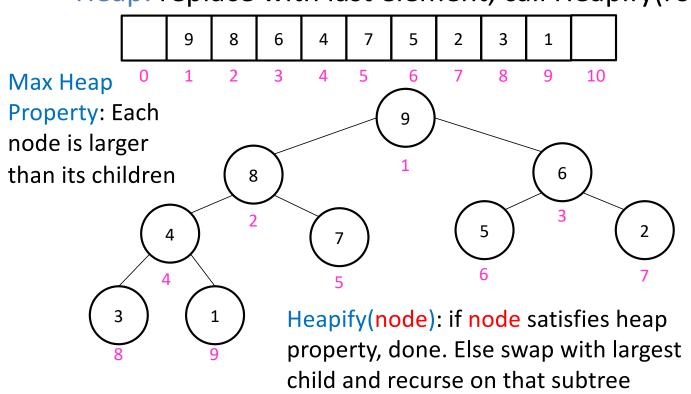
 Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)



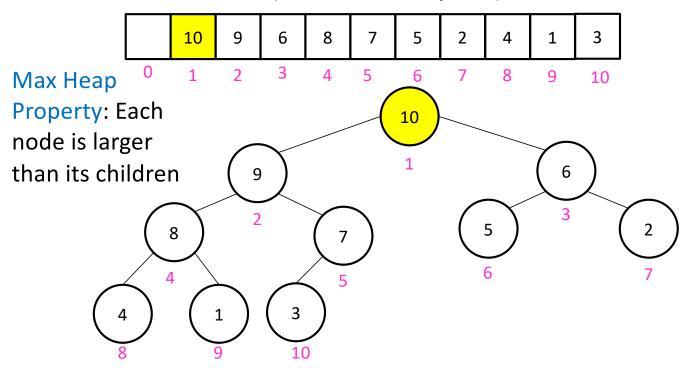
• Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)

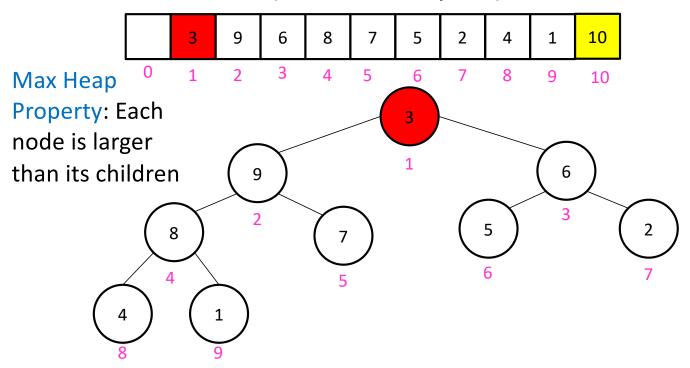


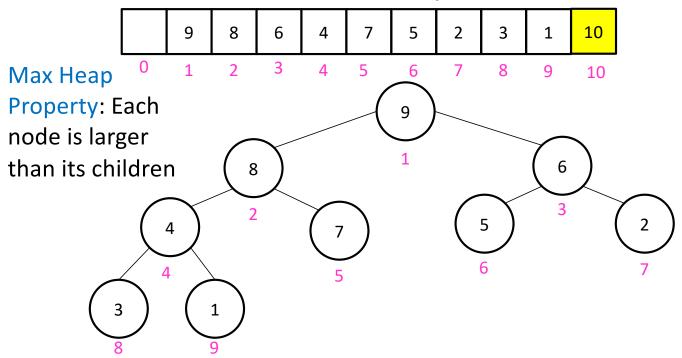
• Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)

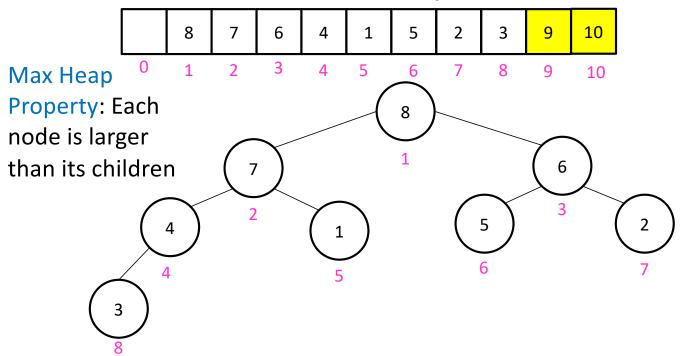


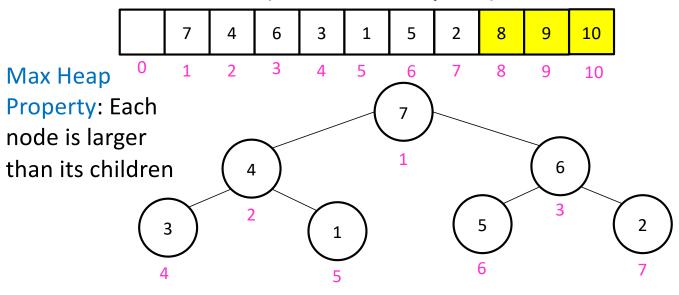
 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left $\frac{\text{Run Time?}}{\Theta(n \log n)}$ Constants worse
than Quick Sort











 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left Run Time? Θ(n log n) Constants worse than Quick Sort Parallelizable? No

In Place? Yes!

No

Adaptive?

No

Stable?

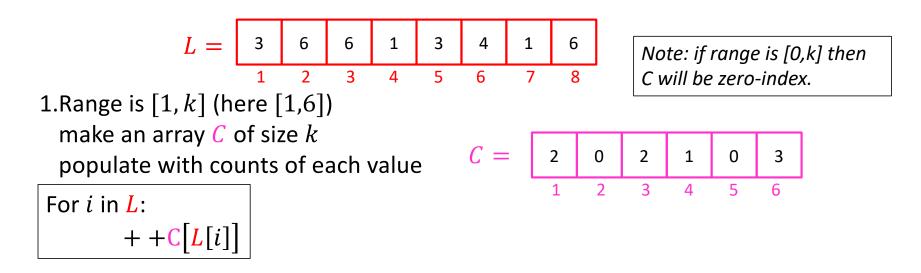
Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

Sorting in Linear Time

- Sometimes we can sort in linear time!
 - Wait, what? We used decision trees to prove sorting is $\Omega(n \log n)$
 - Remember: proof assumed key-comparison was our basic operation
- Thus, if we can do something more than just compare two keys, then...
 - Similar situation: binary search is optimal, but hashing can be faster
- Possible approach: make some sort of assumption about the contents of the list
 - Small number of unique values
 - Small range of values
 - Etc.
- Cannot be comparison-based! We see examples that use a key's numeric value.

• Starting point: Determine how often each element occurs



2.We could easily use *C* to produce a list of sorted key values in a list *B*. Do you see how? (Discuss.)

That's sorting, isn't it, so that's all we need, right? (Answer: no.)

• First Idea: Use index and Count to create output list of key values

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

b_idx = 1 // next position in output list B
for i = 1 to len(C): // look at count for next value in range
 for j = 1 to C[i]: // for each time i occurs...
 B[b_idx] = i // ...put value i into output list
 b_idx = b_idx + 1

Complexity: $\Theta(\max(n, k)) = \Theta(n + k)$

What's wrong with this approach?

Data associated with keys? Stable?

$$C = \begin{bmatrix} 2 & 0 & 2 & 1 & 0 & 3 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$

Priority	Associated Data
2	Data, 1st with pri=2
1	Data, 1 st with pri=1
2	Data, 2 nd with pri=2
1	Data, 2 nd with pri=1

• Better Idea: Count how many things are \leq each element

$$L = \underbrace{3 \quad 6 \quad 6 \quad 1 \quad 3 \quad 4 \quad 1 \quad 6}_{1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8}$$
1.Range is [1, k] (here [1,6])
make an array C of size k
populate with counts of each value
$$C = \begin{bmatrix} 2 & 0 & 2 & 1 & 0 & 3\\ 1 & 2 & 3 & 4 & 5 & 6\\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$
2.Take "running sum" of C
to count things less than each value
$$C = \begin{bmatrix} 2 & 2 & 4 & 5 & 5 & 8\\ 1 & 2 & 3 & 4 & 5 & 6\\ \hline running sum & \hline for i = 2 \text{ to len}(C):\\ C[i] = C[i - 1] + C[i] \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 2 & 4 & 5 & 5 & 8\\ 1 & 2 & 3 & 4 & 5 & 6\\ \hline To \text{ sort: last item of value 3 goes at index 4}$$

41

value 3 goes at index 4

• Idea: Count how many things are \leq each element

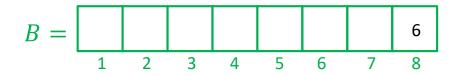
$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix} C$$

For each element of *L* (last to first): Use *C* to find its proper place in *B*. Put element from L there.

Decrement that position of C.

Why? If earlier element in L with

same value is found, placed right before it.



$$C = \begin{bmatrix} 2 & 2 & 4 & 5 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ Last item of value 6 \\ goes at index 8 \end{bmatrix}$$

For $i = len(L)$ downto 1:
$$B \begin{bmatrix} C[L[i]] \end{bmatrix} = L[i] \\ C[L[i]] = C[L[i]] - 1$$

42

• Idea: Count how many things are less than each element

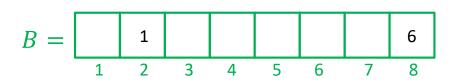
$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix} C$$

For each element of *L* (last to first): Use *C* to find its proper place in *B*.

Put element from L there.

Decrement that position of C.

Why? If earlier element in L with same value is found, placed right before it.



$$C = \begin{bmatrix} 1 & 2 & 4 & 5 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ Last item of value 1 \\ goes at index 2 \end{bmatrix}$$

For $i = len(L)$ downto 1:
$$B \begin{bmatrix} C[L[i]] \end{bmatrix} = L[i] \\ C[L[i]] = C[L[i]] - 1$$

Run Time: O(n + k)Memory: O(n + k)Is this stable? Why or why not?

- Why not always use counting sort?
- For 64-bit numbers, requires an array of length $2^{64} > 10^{19}$
 - 5 GHz CPU will require > 116 years to initialize the array
 - 18 Exabytes of data
 - Total amount of data that Google has (?)

One Exabyte = 10^{18} bytes 1 million terabytes (TB) 1 billion gigabytes (GB)

100,000 x Library of Congress (print)

12 Exabytes

https://en.wikipedia.org/wiki/Utah_Data_Center

Radix Sort

• Idea: Stable sort on each digit, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

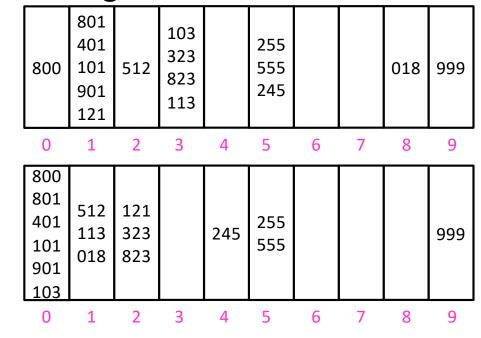
Which stable sort would you choose? Read CLRS, Section 8.3!

800	801 401 101 901 121	512	103 323 823 113		255 555 245			018	999
0	1	2	3	4	5	6	7	8	9

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 10's place



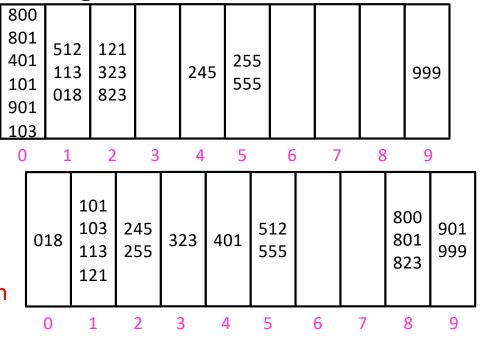
47

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 100's place

Run Time: O(d(n + b)) d = digits in largest valueb = base of representation

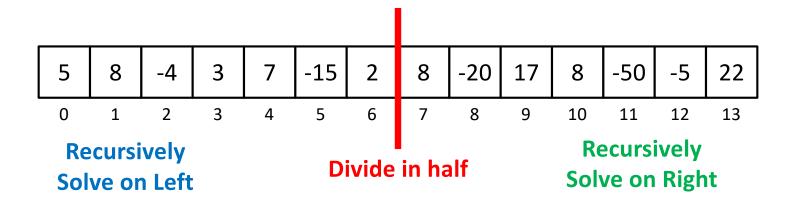


Maximum Sum Continuous Subarray Problem

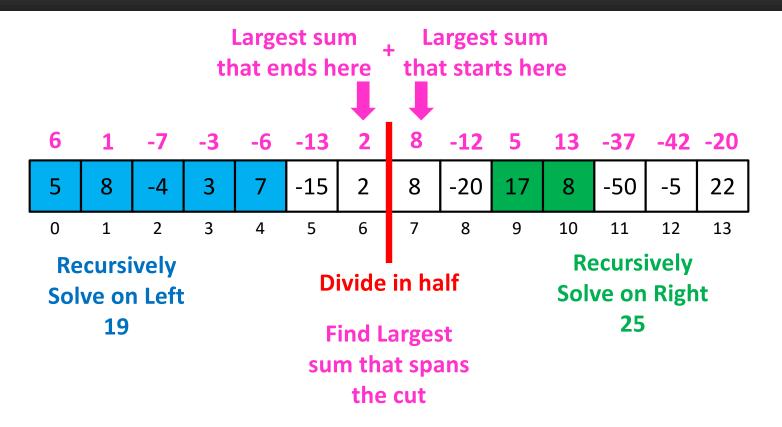
The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$



Divide and Conquer $\Theta(n \log n)$



Divide and Conquer $\Theta(n \log n)$

Return the Max of Left, Right, Center

6	1	-7	-3	-6	-13	2	8	-12	5	13	-37	-42	-20		
5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22		
0	1	2	3	4	5	6	7	8	9	10	11	12	13		
	cursi ve or 19	vely n Left	:		Divide in half Find Largest						Recursively Solve on Right 25				
					sur	the	at spa cut 9	ans	T (1	n) =	27	$\left(\frac{n}{2}\right)$	+n		

Divide and Conquer Summary

Typically multiple subproblems. Typically all roughly the same size.

- Break the list in half
- Conquer

• Divide

- Find the best subarrays on the left and right
- Combine
 - Find the best subarray that "spans the divide"
 - I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem):
 if baseCase(problem):
 solution = solve(problem) #brute force if necessary
 return solution
 subproblems = Divide(problem)
 for sub in subproblems:
 subsolutions.append(myDCalgo(sub))
 solution = Combine(subsolutions)
 return solution

MSCS Divide and Conquer $\Theta(n \log n)$

```
def MSCS(list):
    if list.length < 2:
        return list[0] #list of size 1 the sum is maximal
    {listL, listR} = Divide (list)
    for list in {listL, listR}:
        subSolutions.append(MSCS(list))
        solution = max(solnL, solnR, span(listL, listR))
        return solution</pre>
```

Types of "Divide and Conquer"

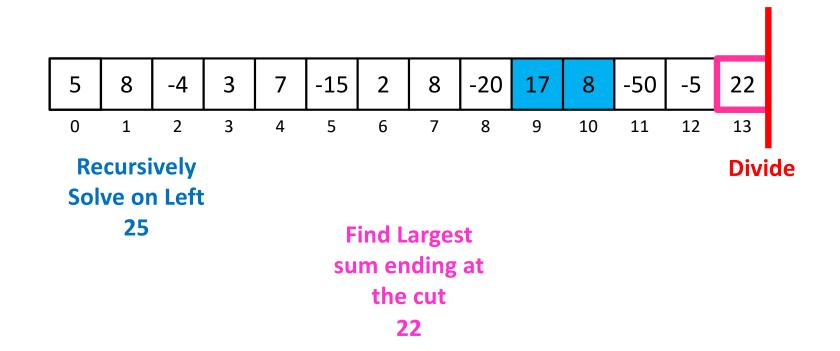
- Divide and Conquer
 - Break the problem up into several subproblems of roughly equal size, recursively solve
 - E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
 - Break the problem into a single smaller subproblem, recursively solve
 - E.g. Impossible Missions Force (Double Agents), Quickselect, Binary Search

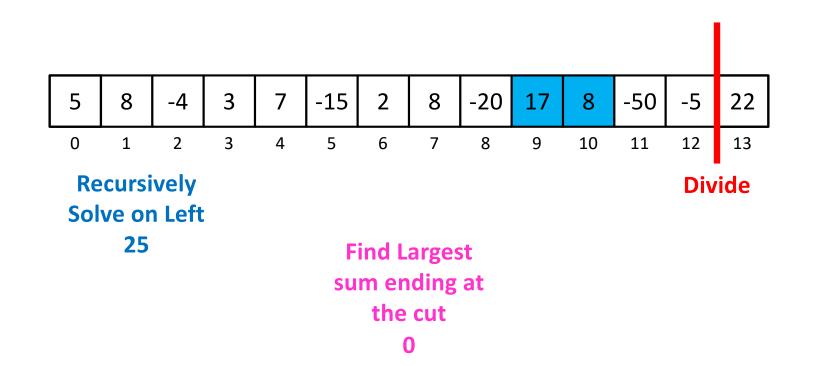
Pattern So Far

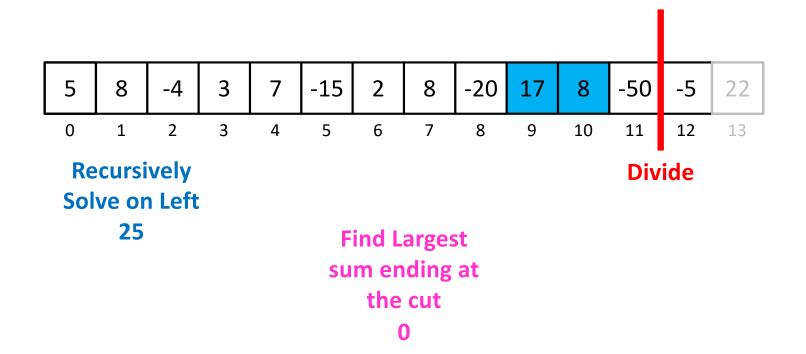
- Typically looking to divide the problem by some fraction (½, ¼ the size)
- Not necessarily always the best!
 - Sometimes, we can write faster algorithms by finding unbalanced divides.

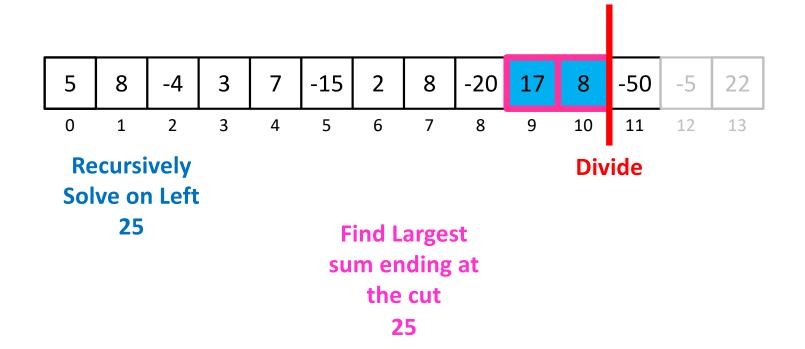
Chip and Conquer

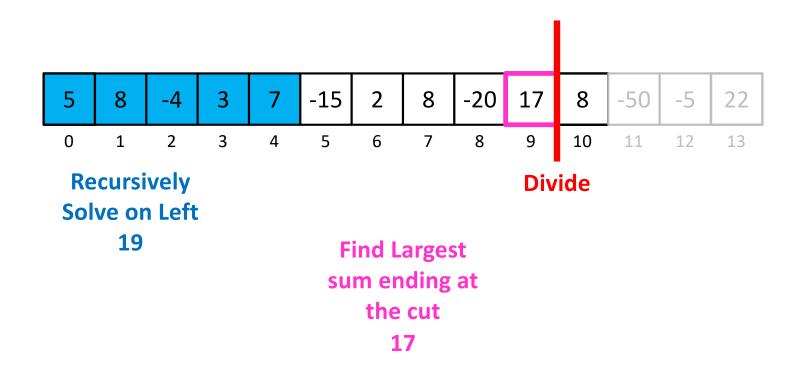
- Divide
 - Make a subproblem of all but the last element
- Conquer
 - Find best subarray on the left (BSL(n-1))
 - Find the <u>b</u>est subarray <u>e</u>nding at the <u>d</u>ivide (BED(n-1))
- Combine
 - New <u>Best Ending at the Divide:</u>
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
 - New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

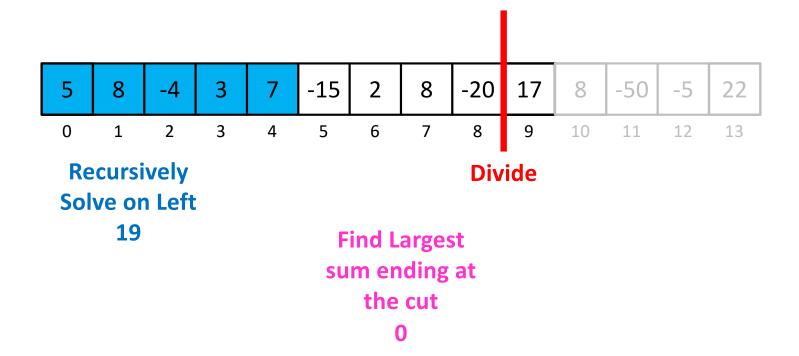


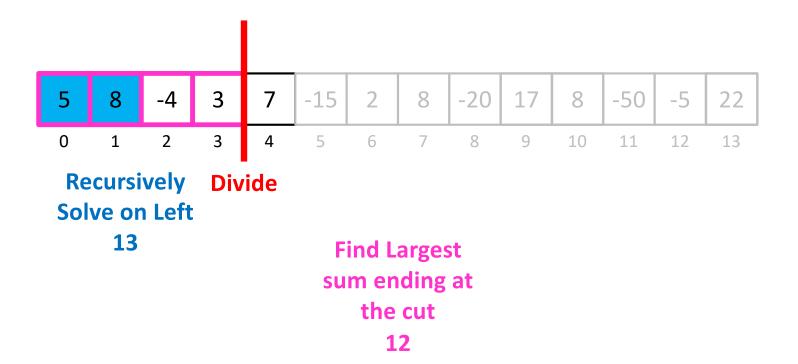












Chip and Conquer

- Divide
 - Make a subproblem of all but the last element
- Conquer
 - Find best subarray on the left (BSL(n-1))
 - Find the best subarray ending at the divide (BED(n-1))
- Combine
 - New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
 - New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Was unbalanced better? YES

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

n.

- Old:
 - We divided in Half
 - We solved 2 different problems:
 - Find the best overall on BOTH the left/right
 - Find the best which end/start on BOTH the left/right respectively
 - Linear time combine
- New:
 - We divide by 1, n-1
 - We solve 2 different problems:
 - Find the best overall on the left ONLY
 - Find the best which ends on the left ONLY
 - Constant time combine

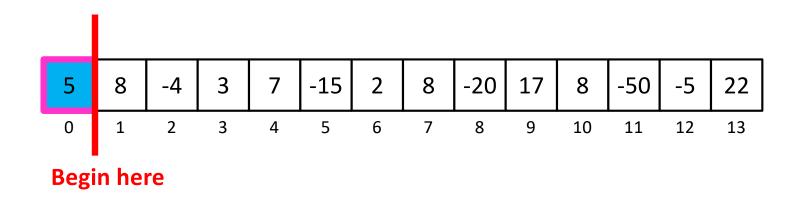
$$T(n) = 1T(n-1) + 1$$

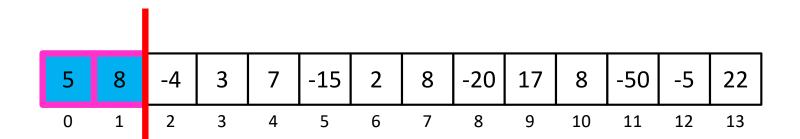
 $T(n) = \Theta(n)$

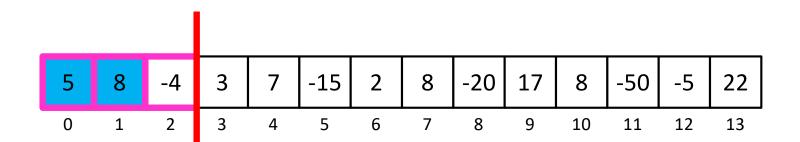
 $T(n) = \Theta(n \log n)$

MSCS Problem - Redux

- Solve in O(n) by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"







Remember two values:Best So FarBest ending here139

