Spring 2020 - Horton's Slides

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:

With these?

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$$
\operatorname{Tile}(0)=\operatorname{Tile}(1)=1
$$

Homeworks

- HW4 due 11pm Thursday, February 27, 2020
- Divide and Conquer and Sorting
- Written (use LaTeX!)
- Submit BOTH a pdf and a zip file (2 separate attachments)
- Midterm: March 4
- Regrade Office Hours
- Fridays 2:30pm-3:30pm (Rice 210)

Today's Keywords

- Maximum Sum Continuous Subarray
- Domino Tiling
- Dynamic Programming
- Log Cutting

CLRS Readings

- Chapter 15
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
- Section 15.2, matrix-chain multiplication (later example)
- Section 15.4, longest common subsequence (even later example)

Maximum Sum Contiguous Subarray Problem

The maximum-sum subarray of a given array of integers A is the interval $[a, b]$ such that the sum of all values in the array between a and b inclusive is maximal.
Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Return the Max of

Left, Right, Center

Divide and Conquer Summary

- Divide

Typically multiple subproblems.

- Break the list in half
- Conquer
- Find the best subarrays on the left and right
- Combine
- Find the best subarray that "spans the divide"
- l.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):
solution = solve(problem) \#brute force if necessary return solution
subproblems = Divide(problem)
for sub in subproblems:
subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

MSCS Divide and Conquer $\Theta(n \log n)$

def MSCS(list):
if list.length < 2:
return list[0] \#list of size 1 the sum is maximal
\{listL, listR\} = Divide (list)
for list in \{listL, listR\}:
subSolutions.append(MSCS(list))
solution $=\max ($ solnL, solnR, $\operatorname{span}($ listL, listR $)$)
return solution

Types of "Divide and Conquer"

- Divide and Conquer
- Break the problem up into several subproblems of roughly equal size, recursively solve
- E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
- Break the problem into a single smaller subproblem, recursively solve
- E.g. Impossible Missions Force (Double Agents), Quickselect, Binary Search

Pattern So Far

- Typically looking to divide the problem by some fraction ($1 / 2,1 / 4$ the size)
- Not necessarily always the best!
- Sometimes, we can write faster algorithms by finding unbalanced divides.
- Chip and Conquer

Chip (Unbalanced Divide) and Conquer

- Divide
- Make a subproblem of all but the last element
- Conquer
- Find Best Subarray (sum) on the Left (BSL($n-1$))
- Find the Best subarray Ending at the Divide (BED $(n-1)$)
- Combine
- New Best Ending at the Divide:
- $\operatorname{BED}(n)=\max (B E D(n-1)+\operatorname{arr}[n], 0)$
- New Best Subarray (sum) on the Left:
- $\operatorname{BSL}(n)=\max (B S L(n-1), \operatorname{BED}(n))$

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Recursively													

Solve on Left

25

Find Largest
sum ending at
the divide
22

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5
0	1	2	2	4	5	6	7	8	9	10	11	12

Recursively
Divide Solve on Left 25

Find Largest
sum ending at
the divide
0

19
Find Largest
sum ending at
the divide
17

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Recursively													
Divide													
Solve on Left													

13
Find Largest
sum ending at
the divide
12

Chip (Unbalanced Divide) and Conquer

- Divide
- Make a subproblem of all but the last element
- Conquer
- Find Best Subarray (sum) on the Left (BSL($n-1$))
- Find the Best subarray Ending at the Divide (BED $(n-1)$)
- Combine
- New Best Ending at the Divide:
- $\operatorname{BED}(n)=\max (B E D(n-1)+\operatorname{arr}[n], 0)$
- New Best Subarray (sum) on the Left:
- $\operatorname{BSL}(n)=\max (B S L(n-1), \operatorname{BED}(n))$

Was unbalanced better? YES

- Old:
- We divided in Half
- We solved 2 different problems:

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+n \\
& T(n)=\Theta(n \log n)
\end{aligned}
$$

- Find the best overall on BOTH the left/right
- Find the best which end/start on BOTH the left/right respectively
- Linear time combine
- New:

$$
T(n)=1 T(n-1)+1
$$

- We divide by $1, \mathrm{n}-1$
- We solve 2 different problems:

$$
T(n)=\Theta(n)
$$

- Find the best overall on the left ONLY
- Find the best which ends on the left ONLY
- Constant time combine

MSCS Problem - Redux

- Solve in $O(n)$ by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"

$\Theta(n)$ Solution

Begin here

Remember two values:

Best So Far 5

Best ending here
5

$\Theta(n)$ Solution

Remember two values:
Best So Far 13

Best ending here
13

$\Theta(n)$ Solution

Remember two values:
Best So Far 13

Best ending here 9

$\Theta(n)$ Solution

Remember two values:
Best So Far 13

Best ending here
12

$\Theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
19

$\Theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here 4

$\Theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
14

$\Theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here

$\Theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
17

$\Theta(n)$ Solution

Remember two values:

Best So Far 25

Best ending here
25

End of Midterm Exam Materials!

"Mr. Osborne, may I be excused? My brain is full."

Back to Tiling

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$$
\operatorname{Tile}(0)=\operatorname{Tile}(1)=1
$$

How to compute Tile (n) ?

Tile(n): if $n<2$:
 return 1
 return Tile(n-1)+Tile(n-2)

Problem?

Recursion Tree

Better way: Use Memory!

Computing Tile(n) with Memory

Initialize Memory M

Tile(n):
if $\mathrm{n}<2$:
return 1
if $M[n]$ is filled:
return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile $(\mathrm{n}-1)+$ Tile $(\mathrm{n}-2)$
return $\mathrm{M}[\mathrm{n}]$

Technique: "memoization" (note no " r ")

Computing Tile (n) with Memory - "Top Down"

Initialize Memory M
Tile(n):
if $\mathrm{n}<2$: return 1
if $M[n]$ is filled: return M[n]
$\mathrm{M}[\mathrm{n}]=$ Tile $(\mathrm{n}-1)+$ Tile $(\mathrm{n}-2)$
return $\mathrm{M}[\mathrm{n}]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem

- What is the "last thing" done?

Generic Divide and Conquer Solution

def myDCalgo(problem):

```
if baseCase(problem):
    solution = solve(problem)
    return solution
for subproblem of problem: # After dividing
    subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution
```


Generic Top-Down Dynamic Programming Soln

mem $=\{ \}$
def myDPalgo(problem):
if mem[problem] not blank:
return mem[problem]
if baseCase(problem):
solution = solve(problem)
mem[problem] = solution return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution

Computing Tile(n) with Memory - "Top Down"

Initialize Memory M
Tile(n):
if $\mathrm{n}<2$:
return 1
if $M[n]$ is filled:
return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$)+Tile($\mathrm{n}-2$)
return $\mathrm{M}[\mathrm{n}]$

M
1 1 1

Recursive calls happen in a predictable order

Better Tile (n) with Memory - "Bottom Up"

Tile(n):
Initialize Memory M
$\mathrm{M}[0]=1$
$\mathrm{M}[1]=1$
for $\mathrm{i}=2$ to n :

$$
M[i]=M[i-1]+M[i-2]
$$

return $\mathrm{M}[\mathrm{n}]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Keep in mind that "solution" here means "optimal solution"
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

More on Optimal Substructure Property

- Detailed discussion on CLRS p. 379
- If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Examples:
- True for coin-changing
- Why? Let's discuss
- True for single-source shortest path (see textbook, p. 381-382)
- Not true for longest-simple-path (p. 382)
- True for knapsack

Real World Problems, Real Solutions!

- If 7-year old Tommy bought this at the movies for $\$ 1.40$
- Could he sell pieces of it to his young friends and make money?
- Not if he charges $\$ 0.10$ per piece
- Maybe a more complex pricing structure? $\$ 0.20$ for $1, \$ 0.80$ for $7, \ldots$

Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:
$\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right] \quad$ Brute Force: $O\left(2^{n}\right)$

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
- Select the most profitable cut first

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
- Select the "most bang for your buck"
- (best price / length ratio)

Greedy: Lengths: 5, 1
Profit: 51
Better: Lengths: 2, 4
Profit: 54

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n
$\operatorname{Cut}(n)=\max \left\{\begin{array}{l}\operatorname{Cut}(n-1)+P[1] \\ \operatorname{Cut}(n-2)+P[2]\end{array}\right.$
$\operatorname{Cut}(0)+P[n]$

$$
\operatorname{Cut}\left(n-\ell_{n}\right)
$$

best way to cut a log of length $n=\ell_{n}$ Last Cut

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(0)=0
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(1)=\operatorname{Cut}(0)+P[1]
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(2)=\max \left\{\begin{array}{l}
\operatorname{Cut}(1)+P[1] \\
\operatorname{Cut}(0)+P[2]
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Log Cutting Pseudocode

Initialize Memory C

Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n :
Run Time: $O\left(n^{2}\right)$ best $=0$ for $\mathrm{j}=1$ to i : best $=\max ($ best, $C[i-j]+P[j])$
$\mathrm{C}[\mathrm{i}]=$ best
return $\mathrm{C}[\mathrm{n}]$

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

```
Initialize Memory C, Choices
Cut(n):
\(\mathrm{C}[0]=0\)
for \(\mathrm{i}=1\) to n :
    best \(=0\)
    for \(\mathrm{j}=1\) to i :
        if best < C[i-j] + P[j]:
                                    best \(=C[i-j]+P[j]\)
                                    Choices \([\mathrm{i}]=\mathrm{j}\) Gives the size
            \(\mathrm{C}[\mathrm{i}]=\) best
    return C[n]
```


Reconstruct the Cuts

- Backtrack through the choices

Example to demo Choices[] only.
Profit of 20 is not
optimal!

65

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}-$ Choices[i$]$

Our Example: Getting Optimal Solution

i	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5	6	7	8	9	10
$\mathrm{C}[i]$	0	1	5	8	10	13	17	18	22	25	30
Choice[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
- Best score is 13
- Cut at Choice[n]=2, then cut at Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
- Best score is 18
- Cut at 1 , then cut at 6

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Mental Stretch

How many arithmetic operations are required to multiply a $n \times m$
Matrix with a $m \times p$ Matrix?
(don't overthink this)

Mental Stretch

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- m multiplications and additions per element
- $n \cdot p$ elements to compute
- Total cost: $m \cdot n \cdot p$

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
$-\operatorname{uses}\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3}$ operations

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $\mathrm{c}_{1} \cdot \mathrm{r}_{1} \cdot c_{3}+\left(\mathrm{c}_{2} \cdot r_{2} \cdot c_{3}\right)$ operations

Order Matters!

$c_{1}=r_{2}$
$c_{2}=r_{3}$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$

$$
\begin{aligned}
& - \text { uses }\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3} \text { operations } \\
& -(10 \cdot 7 \cdot 20)+20 \cdot 7 \cdot 8=2520
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $c_{1} \cdot r_{1} \cdot c_{3}+\left(c_{2} \cdot r_{2} \cdot c_{3}\right)$ operations
$-10 \cdot 7 \cdot 8+(20 \cdot 10 \cdot 8)=2160$

$$
\begin{gathered}
M_{1}=7 \times 10 \\
M_{2}=10 \times 20 \\
M_{3}=20 \times 8 \\
c_{1}=10 \\
c_{2}=20 \\
c_{3}=8 \\
r_{1}=7 \\
r_{2}=10 \\
r_{3}=20
\end{gathered}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}
$\operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$
$\operatorname{Best}(i, i)=0$
$\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\ \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\ \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\ \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\ \ldots \\ \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}\end{array}\right.$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{\operatorname{Save}}_{\substack{\text { Read from } \mathrm{M}[\mathrm{n}] \\
\text { if present }}}+\mathrm{M}[\mathrm{n}] \\
& \operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
& \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
& \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
& \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
& \cdots \\
& \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}
$\operatorname{Best}(i, j)=\min _{k=i}^{j-1}(\operatorname{Best}(i, \underbrace{\operatorname{Best}(i, i)+\operatorname{Best}(k}_{\substack{\text { Read from } \mathrm{M}[n] \\ \text { if present }}}+1, j)+r_{i} r_{k+1} c_{j})$
$\operatorname{Best}(1, n)=\min \underbrace{\operatorname{Best}(2, n)+r_{1} r_{2} c_{n}}_{\text {Save to } \mathrm{M}[\mathrm{n}]} \begin{aligned} & \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\ & \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\ & \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\ & \ldots \\ & \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}\end{aligned}$

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

Matrix Chaining

Run Time

1. Initialize $\operatorname{Best}[i, i]$ to be all $0 s \quad \Theta\left(n^{2}\right)$ cells in the Array
2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

Each "call" to Best() is a O(1) memory lookup

1. Best $[i, i]=0$
$\Theta(n)$ options for each cell
2. $\operatorname{Best}[i, j]=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$

$$
\Theta\left(n^{3}\right) \text { overall run time }
$$

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

Matrix Chaining

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Tinne!
In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the
 ocean. How did George make this discovery?

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Cropping

- Removes a "block" of pixels

Scaling

- Removes "stripes" of pixels

Seam Carving

- Removes "least energy seam" of pixels
- http://rsizr.com/

Seattle Skyline

Energy of a Seam

- Sum of the energies of each pixel
$-e(p)=$ energy of pixel p
- Many choices
- E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
- Particular choice doesn't matter, we use it as a "black box"

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so delete:

$$
\min _{k=1}^{m}(S(n, k))
$$

Computing

Assume we know the least energy seams for all of row $n-1$
(i.e. we know $S(n-1, \ell)$ for all ℓ)

Known through $n-1$

Computing

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

$S(n-1, k+1)$

Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel in row 1

Energy of the seam initialized to the energy of that pixel

Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$
For $i>2$ find $S(i, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ S(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$

Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$
For $i>2$ find $S(i, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ S(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$
Pick smallest from top row, backtrack, removing those pixels

Energy of the seam initialized to the energy of that pixel

Run Time?

Start from bottom of image (row 1), solve up to top

Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$
For $i \geq 2$ find $S(i, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{i, k}\right) \\ S(n-1, k)+e\left(p_{i, k}\right) \\ S(n-1, k+1)+e\left(p_{i, k}\right)\end{array}\right.$

$$
\Theta(m)
$$

$\Theta(n \cdot m)$
$\Theta(n+m)$
Pick smallest from top row, backtrack, removing those pixels

Repeated Seam Removal

Only need to update pixels dependent on the removed seam
$2 n$ pixels change $\quad \Theta(2 n)$ time to update pixels

