
Warm Up
How many ways are there to tile a 2×𝑛 board with 

dominoes?
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How many ways to 
tile this:

With these?

Spring 2020 – Horton’s Slides
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How many ways are there to tile 
a 2×𝑛 board with dominoes?

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1



Homeworks

• HW4 due 11pm Thursday, February 27, 2020
– Divide and Conquer and Sorting
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Midterm: March 4
• Regrade Office Hours
– Fridays 2:30pm-3:30pm (Rice 210)
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Today’s Keywords

• Maximum Sum Continuous Subarray
• Domino Tiling
• Dynamic Programming
• Log Cutting
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CLRS Readings

• Chapter 15
– Section 15.1, Log/Rod cutting, optimal substructure property

• Note: ri in book is called Cut() or C[] in our slides.  We use their example.

– Section 15.3, More on elements of DP, including optimal substructure 
property

– Section 15.2, matrix-chain multiplication (later example)
– Section 15.4, longest common subsequence (even later example)
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Maximum Sum Contiguous Subarray Problem

The maximum-sum subarray of a given array of integers 𝐴 is the 
interval [𝑎, 𝑏] such that the sum of all values in the array 
between 𝑎 and 𝑏 inclusive is maximal. 
Given an array of 𝑛 integers (may include both positive and 
negative values), give a 𝑂(𝑛 log 𝑛) algorithm for finding the 
maximum-sum subarray.
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Divide and Conquer Θ(𝑛 log 𝑛)
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
Recursively 

Solve on Right



Divide and Conquer Θ(𝑛 log 𝑛)
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum 
that ends here

+ Largest sum 
that starts here



Divide and Conquer Θ(𝑛 log 𝑛)
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of 
Left, Right, Center

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛



Divide and Conquer Summary

• Divide
– Break the list in half

• Conquer
– Find the best subarrays on the left and right

• Combine
– Find the best subarray that “spans the divide”
– I.e. the best subarray that ends at the divide concatenated with the 

best that starts at the divide

Typically multiple subproblems.
Typically all roughly the same size.



Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution
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MSCS Divide and Conquer Θ(𝑛 log 𝑛)

def MSCS(list):
if list.length < 2:

return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:

subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution
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Types of “Divide and Conquer”

• Divide and Conquer
– Break the problem up into several subproblems of roughly equal size, 

recursively solve
– E.g. Karatsuba, Closest Pair of Points, Mergesort…

• Decrease and Conquer
– Break the problem into a single smaller subproblem, recursively solve
– E.g. Impossible Missions Force (Double Agents), Quickselect, Binary 

Search



Pattern So Far

• Typically looking to divide the problem by some fraction 
(½, ¼ the size)

• Not necessarily always the best!
– Sometimes, we can write faster algorithms by finding unbalanced

divides.
– Chip and Conquer



Chip (Unbalanced Divide) and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find Best Subarray (sum) on the Left (𝐵𝑆𝐿(𝑛 − 1))
– Find the Best subarray Ending at the Divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
– New Best Subarray (sum) on the Left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
22



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
25



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the divide
17



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the divide
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

13 Find Largest 
sum ending at 

the divide
12



Chip (Unbalanced Divide) and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find Best Subarray (sum) on the Left (𝐵𝑆𝐿(𝑛 − 1))
– Find the Best subarray Ending at the Divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
– New Best Subarray (sum) on the Left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



Was unbalanced better?

• Old:
– We divided in Half
– We solved 2 different problems:

• Find the best overall on BOTH the left/right
• Find the best which end/start on BOTH the left/right respectively

– Linear time combine
• New:
– We divide by 1, n-1
– We solve 2 different problems:

• Find the best overall on the left ONLY 
• Find the best which ends on the left ONLY

– Constant time combine

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇 𝑛 = 1𝑇 𝑛 − 1 + 1

𝑇 𝑛 = Θ(𝑛 log 𝑛)

𝑇 𝑛 = Θ(𝑛)

YES



MSCS Problem - Redux

• Solve in 𝑂(𝑛) by increasing the problem size by 1 each time.
• Idea: Only include negative values if the positives on both sides 

of it are “worth it”



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13



Θ(𝑛) Solution

28

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 9



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 12



Θ(𝑛) Solution

30

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 4



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 14



Θ(𝑛) Solution

33

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 0



Θ(𝑛) Solution

34

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 17



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25



End of Midterm Exam Materials!
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Back to Tiling
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38

How many ways are there to tile 
a 2×𝑛 board with dominoes?

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1



How to compute 𝑇𝑖𝑙𝑒(𝑛)?
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Tile(n):
if n < 2:

return 1
return Tile(n-1)+Tile(n-2)

Problem?



Recursion Tree

40

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2D)



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

M

0

1

2

3

4

5

6

Technique: “memoization” (note no “r”)



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

43𝑛 − 1 𝑛 − 2



Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem:    # After dividing

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution
44



Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution
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Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Recursive calls happen in a predictable order



Better 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”

47

Tile(n):
Initialize Memory M
M[0] = 1
M[1] = 1
for i = 2 to n:

M[i] = M[i-1] + M[i-2]
return M[n]

M

0

1

2

3

4

5

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Keep in mind that “solution” here means “optimal solution”

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

48



More on Optimal Substructure Property

• Detailed discussion on CLRS p. 379
– If A is an optimal solution to a problem, then the components of A 

are optimal solutions to subproblems
• Examples:
– True for coin-changing

• Why?  Let’s discuss
– True for single-source shortest path  (see textbook, p. 381-382)
– Not true for longest-simple-path (p. 382)
– True for knapsack

49



Real World Problems, Real Solutions!

• If 7-year old Tommy bought this at the movies for $1.40
– Could he sell pieces of it to his young friends and make money?
– Not if he charges $0.10 per piece
– Maybe a more complex pricing structure? $0.20 for 1, $0.80 for 7, …

50



Log Cutting

51

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖) 
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓG, … , ℓI such that:
∑ ℓK = 𝑛

to maximize ∑𝑃[ℓK] Brute Force: 𝑂(2D)



Greedy won’t work

52

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

• Greedy algorithms (next unit) build a solution by picking the 
best option “right now”
– Select the most profitable cut first



Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the 
best option “right now”
– Select the “most bang for your buck” 

• (best price / length ratio)

53

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1

Profit: 51

Better: Lengths: 2, 4
Profit: 54

50

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

54



1. Identify Recursive Structure

55

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓD
𝐶𝑢𝑡(𝑛 − ℓD)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

56



3. Select a Good Order for Solving Subproblems

57

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 0 = 0

0



3. Select a Good Order for Solving Subproblems

58

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 1 = 𝐶𝑢𝑡 0 + 𝑃[1]

1



3. Select a Good Order for Solving Subproblems

59

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 2 = max 𝐶𝑢𝑡 1 + 𝑃 1
𝐶𝑢𝑡 0 + 𝑃 2

2



3. Select a Good Order for Solving Subproblems

60

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 3 = max 𝐶𝑢𝑡 2 + 𝑃 1
𝐶𝑢𝑡 1 + 𝑃 2
𝐶𝑢𝑡 0 + 𝑃[3]

3



3. Select a Good Order for Solving Subproblems

61

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4



Log Cutting Pseudocode

62

Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]

Run Time: 𝑂(𝑛R)



How to find the cuts?

• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack

63



Remember the choice made

64

Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size 
of the last cut



Reconstruct the Cuts

65

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Example to demo 
Choices[] only.
Profit of 20 is not 
optimal!



Backtracking Pseudocode

i = n
while i > 0:

print Choices[i]
i = i – Choices[i]

66



Our Example: Getting Optimal Solution

i 0 1 2 3 4 5 6 7 8 9 10
C[i] 0 1 5 8 10 13 17 18 22 25 30

Choice[i] 0 1 2 3 2 2 6 1 2 3 10

67

• If n were 5
• Best score is 13
• Cut at Choice[n]=2, then cut at

Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
• If n were 7
• Best score is 18
• Cut at 1, then cut at 6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

68



Mental Stretch

69

How many arithmetic operations are required to multiply a 𝑛×𝑚
Matrix with a 𝑚×𝑝 Matrix? 

(don’t overthink this)

𝑛

𝑚

𝑚

𝑝

×



Mental Stretch

• 𝑚 multiplications and additions per element
• 𝑛 ⋅ 𝑝 elements to compute
• Total cost: 𝑚 ⋅ 𝑛 ⋅ 𝑝 70

𝑛

𝑚

𝑚

𝑝

𝑛

𝑝

× =

How many arithmetic operations are required to multiply a 𝑛×𝑚
Matrix with a 𝑚×𝑝 Matrix? 

(don’t overthink this)



Matrix Chaining

71

𝑀G𝑟G

𝑐G

𝑟R×

𝑐R

𝑀X𝑟X

𝑐X

× × 𝑟Y

𝑐Y

• Given a sequence of Matrices (𝑀G,… ,𝑀D), what is the most 
efficient way to multiply them?

𝑀R 𝑀Y



Order Matters!

• 𝑀G×𝑀R ×𝑀X
– uses 𝑐G ⋅ 𝑟G ⋅ 𝑐R + cR ⋅ 𝑟G ⋅ 𝑐X operations

72

𝑀G𝑟G

𝑐G

𝑟R×

𝑐R

𝑀X𝑟X

𝑐X

×𝑀R

𝑟G

𝑐R

𝑐G = 𝑟R
𝑐R = 𝑟X



Order Matters!

• 𝑀G×(𝑀R×𝑀X)
– uses cG ⋅ rG ⋅ 𝑐X + (cR ⋅ 𝑟R ⋅ 𝑐X) operations

73

𝑀G𝑟G

𝑐G

𝑟R×

𝑐R

𝑀X𝑟X

𝑐X

×𝑀R

𝑟R

𝑐X

𝑐G = 𝑟R
𝑐R = 𝑟X



Order Matters!

• 𝑀G×𝑀R ×𝑀X
– uses 𝑐G ⋅ 𝑟G ⋅ 𝑐R + cR ⋅ 𝑟G ⋅ 𝑐X operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• 𝑀G×(𝑀R×𝑀X)
– uses 𝑐G ⋅ 𝑟G ⋅ 𝑐X + (cR ⋅ 𝑟R ⋅ 𝑐X) operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160

74

𝑐G = 𝑟R
𝑐R = 𝑟X

𝑐G = 10
𝑐R = 20
𝑐X = 8
𝑟G = 7
𝑟R = 10
𝑟X = 20

𝑀G = 7×10
𝑀R = 10×20
𝑀X = 20×8



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify the Recursive Structure of the Problem
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𝑟R×

𝑐R

𝑀X𝑟X

𝑐X

× × 𝑟Y

𝑐Y

𝑀R 𝑀Y

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀G through 𝑀D

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟G𝑟R𝑐Y

𝑐Y

𝑟R



1. Identify the Recursive Structure of the Problem

77

𝑀G𝑟G

𝑐G

𝑟R×

𝑐R

𝑀X𝑟X

𝑐X

× × 𝑟Y

𝑐Y

𝑀R 𝑀Y

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀G through 𝑀D
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem

• In general:

79

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀K through 𝑀d

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟G𝑟R𝑐D
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟G𝑟X𝑐D
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟G𝑟Y𝑐D
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟G𝑟e𝑐D
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟G𝑟D𝑐D

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
dfG

IgK
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟K𝑟IiG𝑐d

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

80



2. Save Subsolutions in Memory

• In general:

81

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀K through 𝑀d

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟G𝑟R𝑐D
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟G𝑟X𝑐D
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟G𝑟Y𝑐D
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟G𝑟e𝑐D
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟G𝑟D𝑐D

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
dfG

IgK
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟K𝑟IiG𝑐d

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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3. Select a good order for solving subproblems

• In general:

83

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀K through 𝑀d

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟G𝑟R𝑐D
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟G𝑟X𝑐D
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟G𝑟Y𝑐D
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟G𝑟e𝑐D
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟G𝑟D𝑐D

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
dfG

IgK
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟K𝑟IiG𝑐d

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



3. Select a good order for solving subproblems
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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𝐵𝑒𝑠𝑡 1,3 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 3 + 𝑟G𝑟R𝑐X
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3. Select a good order for solving subproblems

7875

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding 
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖



Matrix Chaining
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𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟G𝑟R𝑐j
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟G𝑟X𝑐j
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟G𝑟Y𝑐j
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟G𝑟e𝑐j
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟G𝑟j𝑐j

15125

𝑗 =
= 𝑖



Run Time

1. Initialize 𝐵𝑒𝑠𝑡[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right, 

fill in each cell using:
1. 𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. 𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
dfG

IgK
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟K𝑟IiG𝑐d
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Θ(𝑛R) cells in the Array

Θ(𝑛) options for each cell

Θ(𝑛X) overall run time

Each ”call” to Best() is a 
O(1) memory lookup



Backtrack to find the best order

9292

“remember” which choice of 𝑘 was the minimum at each cell
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𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟G𝑟R𝑐j
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟G𝑟X𝑐j
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟G𝑟Y𝑐j
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟G𝑟e𝑐j
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟G𝑟j𝑐j

15125

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
dfG

IgK
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟K𝑟IiG𝑐d

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
31

5

𝑗 =
= 𝑖



Matrix Chaining
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𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟G𝑟R𝑐j
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?
2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

94



In Season 9 Episode 7 “The Slicer” of the hit 90s TV show 
Seinfeld,  George discovers that, years prior, he had a heated 

argument with his new boss, Mr. Kruger. This argument  
ended in George throwing Mr. Kruger’s boombox into the 

ocean. How did George make this discovery?
95https://www.youtube.com/watch?v=pSB3HdmLcY4

https://www.youtube.com/watch%3Fv=pSB3HdmLcY4




Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Cropped Scaled Carved



Cropping

• Removes a “block” of pixels

100

Cropped



Scaling

• Removes “stripes” of pixels

101

Scaled



Seam Carving

• Removes “least energy seam” of pixels
• http://rsizr.com/

102

Carved

http://rsizr.com/


Seattle Skyline
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Energy of a Seam

• Sum of the energies of each pixel
– 𝑒 𝑝 = energy of pixel 𝑝

• Many choices
– E.g.: change of gradient (how much the color of this pixel differs from 

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

104



Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 = least energy seam from the bottom of the image up 
to pixel 𝑝K,d

105

𝑝K,d



Finding the Least Energy Seam

106

𝑝D,I

Want the least energy seam going from bottom to top, so delete:

min
l

IgG
𝑆(𝑛, 𝑘)

𝑛

𝑚



Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of 
row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

107

𝑝D,I

Known 
through 
𝑛 − 1

𝑚



Computing 𝑆(𝑛, 𝑘)

108

Assume we know the least energy seams for all 
of row 𝑛 − 1 (i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝D,I

S(n-1,k) S(n-1,k+1)

S(n,k)



Computing 𝑆(𝑛, 𝑘)

109

Assume we know the least energy seams for all 
of row 𝑛 − 1 (i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝D,I

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝D,I)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝D,I)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝D,I)



Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝G,I) for each pixel in row 1

110

𝑛

𝑚

Energy of the seam 
initialized to the 
energy of that pixel



Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝G,I) for each pixel 𝑝G,I

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min
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𝑛

𝑚

Energy of the seam 
initialized to the 
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝D,I)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝D,I)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝D,I)



Bring It All Together

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝G,I) for each pixel 𝑝G,I

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels
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𝑛

𝑚

Energy of the seam 
initialized to the 
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝D,I)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝D,I)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝D,I)



Run Time?

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝G,I) for each pixel 𝑝G,I

For 𝑖 ≥ 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels
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𝑛

𝑚

Energy of the seam 
initialized to the 
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝K,I)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝K,I)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝K,I)

Θ(𝑛 ⋅ 𝑚)

Θ(𝑚)

Θ(𝑛 + 𝑚)



Repeated Seam Removal
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𝑛

𝑚

Only need to update pixels dependent on the removed seam
2𝑛 pixels change Θ(2𝑛) time to update pixels

Θ(𝑛 + 𝑚) time to find min+backtrack


