Spring 2020 - Horton's Slides

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix?
(don't overthink this)

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- m multiplications and additions per element
- $n \cdot p$ elements to compute
- Total cost: $m \cdot n \cdot p$

Homeworks

- HW4 due 11pm Thursday, February 27, 2020
- Divide and Conquer and Sorting
- Written (use LaTeX!)
- Submit BOTH a pdf and a zip file (2 separate attachments)
- Midterm: March 4
- Regrade Office Hours
- Fridays 2:30pm-3:30pm (Rice 210)
- Also, Horton (only), this Friday, Rice 401

Midterm

- Wednesday, March 4 in class
- SDAC: Please schedule with SDAC for Wednesday
- Mostly in-class with a (required) take-home portion
- Practice Midterm available on Collab Friday
- Review Session
- Details by email soon

Today's Keywords

- Dynamic Programming
- Log Cutting
- Matrix Chaining

CLRS Readings

- Chapter 15
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
- Section 15.2, matrix-chain multiplication
- Section 15.4, longest common subsequence (later example)

Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:
$\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right] \quad$ Brute Force: $O\left(2^{n}\right)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n
$\operatorname{Cut}(n)=\max \left\{\begin{array}{l}\operatorname{Cut}(n-1)+P[1] \\ \operatorname{Cut}(n-2)+P[2]\end{array}\right.$
$\operatorname{Cut}(0)+P[n]$
$\operatorname{Cut}\left(n-\ell_{k}\right)$
best way to cut a log of length $n-\ell_{k}$. Last Gut

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(0)=0
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(1)=\operatorname{Cut}(0)+P[1]
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(2)=\max \left\{\begin{array}{l}
\operatorname{Cut}(1)+P[1] \\
\operatorname{Cut}(0)+P[2]
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Log Cutting Pseudocode

Initialize Memory C
$\operatorname{Cut}(\mathrm{n})$:
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n : // log size best = 0
for $\mathrm{j}=1$ to i : // last cut best $=\max ($ best, $C[i-j]+P[j])$
$\mathrm{C}[\mathrm{i}]=$ best
return $\mathrm{C}[\mathrm{n}]$

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

```
Initialize Memory C, Choices
Cut(n):
\(C[0]=0\)
for \(\mathrm{i}=1\) to n :
    best \(=0\)
    for \(\mathrm{j}=1\) to i :
        if best < C[i-j] + P[j]:
                                    best \(=C[i-j]+P[j]\)
                                    Choices \([\mathrm{i}]=\mathrm{j}\) Gives the size
            \(\mathrm{C}[\mathrm{i}]=\) best
    return C[n]
```


Reconstruct the Cuts

- Backtrack through the choices

Example to demo Choices[] only.
Profit of 20 is not optimal!

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}-$ Choices[i$]$

Our Example: Getting Optimal Solution

\mathbf{i}	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{C}[i]$	0	1	5	8	10	13	17	18	22	25	30
Choices[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
- Best score is 13
- Cut at Choices[n]=2, then cut at Choices[n-Choices[n]]= Choices[5-2]= Choices[3]=3
- If n were 7
- Best score is 18
- Cut at 1 , then cut at 6

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
$-\operatorname{uses}\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3}$ operations

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $\mathrm{c}_{1} \cdot \mathrm{r}_{1} \cdot c_{3}+\left(\mathrm{c}_{2} \cdot r_{2} \cdot c_{3}\right)$ operations

Order Matters!

$c_{1}=r_{2}$
$c_{2}=r_{3}$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$

$$
\begin{aligned}
& - \text { uses }\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3} \text { operations } \\
& -(10 \cdot 7 \cdot 20)+20 \cdot 7 \cdot 8=2520
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $c_{1} \cdot r_{1} \cdot c_{3}+\left(c_{2} \cdot r_{2} \cdot c_{3}\right)$ operations
$-10 \cdot 7 \cdot 8+(20 \cdot 10 \cdot 8)=2160$

$$
\begin{gathered}
M_{1}=7 \times 10 \\
M_{2}=10 \times 20 \\
M_{3}=20 \times 8 \\
c_{1}=10 \\
c_{2}=20 \\
c_{3}=8 \\
r_{1}=7 \\
r_{2}=10 \\
r_{3}=20
\end{gathered}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}
$\operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$
$\operatorname{Best}(i, i)=0$
$\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\ \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\ \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\ \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\ \ldots \\ \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}\end{array}\right.$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}(\operatorname{Best}(i, \underbrace{\operatorname{Best}(i, i)}_{\begin{array}{l}
\text { Read from } \mathrm{M}[\mathrm{n}] \\
\text { if present }
\end{array}}=\underbrace{\operatorname{Best}(k}_{0}+1, j)+r_{i} r_{k+1} c_{j}) \\
& \text { Save to } \mathrm{M}[\mathrm{n}]
\end{aligned} \begin{aligned}
& \operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
& \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
& \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
& \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
& \ldots \\
& \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}
$\operatorname{Best}(i, j)=\min _{k=i}^{j-1}(\operatorname{Best}(i, \underbrace{\operatorname{Best}(i, i)+\operatorname{Best}(k}_{\substack{\text { Read from } \mathrm{M}[n] \\ \text { if present }}}+1, j)+r_{i} r_{k+1} c_{j})$
$\operatorname{Best}(1, n)=\min \underbrace{\operatorname{Best}(2, n)+r_{1} r_{2} c_{n}}_{\text {Save to } \mathrm{M}[\mathrm{n}]} \begin{aligned} & \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\ & \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\ & \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\ & \ldots \\ & \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}\end{aligned}$

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0 \\
& r_{1} r_{2} c_{3}=30 \cdot 35 \cdot 5=5250 \\
& r_{1} r_{3} c_{3}=30 \cdot 15 \cdot 5=2250 \\
& \operatorname{Best}(1,3)=\min \left\{\begin{array}{cc}
0 & 2625
\end{array}\right.
\end{aligned}
$$

3. Select a good order for solving subproblems

Matrix Chaining

Run Time

1. Initialize $\operatorname{Best}[i, i]$ to be all $0 s \quad \Theta\left(n^{2}\right)$ cells in the Array
2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

Each "call" to Best() is a O(1) memory lookup

1. Best $[i, i]=0$
$\Theta(n)$ options for each cell
2. $\operatorname{Best}[i, j]=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$

$$
\Theta\left(n^{3}\right) \text { overall run time }
$$

Backtrack to find the best order

"Remember" which choice of k was the minimum at each cell. Intuitively this was the best place to "split" for that range (i, j).

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
- Choice $[i, j]=k$ means the best "split" was right after M_{k}
- Work backwards from value for whole problem, Choice[1,n]
- Note: Choice $[i, i+1]=i$ because there are just 2 matrices
- From our example:
- Choice[1,6] = 3. So $\left[M_{1} M_{2} M_{3}\right]\left[M_{4} M_{5} M_{6}\right]$
- We then need Choice $[1,3]=1$. So $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]$
- Also need Choice $[4,6]=5$. So $\left[\left(M_{4} M_{5}\right) M_{6}\right]$
- Overall: [($\left.\left.\mathrm{M}_{1}\right)\left(\mathrm{M}_{2} \mathrm{M}_{3}\right)\right]\left[\left(\mathrm{M}_{4} \mathrm{M}_{5}\right) \mathrm{M}_{6}\right]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

