Spring 2020 - Horton's Slides

Dynamic Programming, Part Deux

- Our mid-term is coming!
- Spring Break's also coming!
- You'll make it! :) Hang in there!!!

Midterm

- Wednesday, March 4 in class
- SDAC: Please schedule with SDAC for Wednesday
- Mostly in-class with a (required) take-home portion
- Take-home "bonus" - If you do better on take-home than on its "starter" question on the in-class, you can earn back half the difference.
- Practice Midterm and Solutions on Collab
- Review Session on Panopto
- More office hours by me! See Piazza

Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Seam Carving

CLRS Readings

- Chapter 15
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
-Section 15.2, matrix-chain multiplication
-Section 15.4, longest common subsequence

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
$-\operatorname{uses}\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3}$ operations

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $\mathrm{c}_{1} \cdot \mathrm{r}_{1} \cdot c_{3}+\left(\mathrm{c}_{2} \cdot r_{2} \cdot c_{3}\right)$ operations

Order Matters!

$c_{1}=r_{2}$
$c_{2}=r_{3}$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$

$$
\begin{aligned}
& - \text { uses }\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3} \text { operations } \\
& -(10 \cdot 7 \cdot 20)+20 \cdot 7 \cdot 8=2520
\end{aligned}
$$

- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $c_{1} \cdot r_{1} \cdot c_{3}+\left(c_{2} \cdot r_{2} \cdot c_{3}\right)$ operations
$-10 \cdot 7 \cdot 8+(20 \cdot 10 \cdot 8)=2160$

$$
\begin{gathered}
M_{1}=7 \times 10 \\
M_{2}=10 \times 20 \\
M_{3}=20 \times 8 \\
c_{1}=10 \\
c_{2}=20 \\
c_{3}=8 \\
r_{1}=7 \\
r_{2}=10 \\
r_{3}=20
\end{gathered}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

$$
\operatorname{Best}(1,4)=\min \left\{\begin{array}{l}
\operatorname{Best}(2,4)+r_{1} r_{2} c_{4} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3,4)+r_{1} r_{3} c_{4} \\
\operatorname{Best}(1,3)+r_{1} r_{4} c_{4}
\end{array}\right.
$$

1. Identify the Recursive Structure of the Problem

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}
$\operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$
$\operatorname{Best}(i, i)=0$
$\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\ \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\ \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\ \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\ \ldots \\ \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}\end{array}\right.$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}(\operatorname{Best}(i, \underbrace{\operatorname{Best}(i, i)}_{\begin{array}{l}
\text { Read from } \mathrm{M}[\mathrm{n}] \\
\text { if present }
\end{array}}=\underbrace{\operatorname{Best}(k}_{0}+1, j)+r_{i} r_{k+1} c_{j}) \\
& \text { Save to } \mathrm{M}[\mathrm{n}]
\end{aligned} \begin{aligned}
& \operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
& \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
& \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
& \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
& \ldots \\
& \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

- In general:
$\operatorname{Best}(i, j)=$ cheapest way to multiply together M_{i} through M_{j}
$\operatorname{Best}(i, j)=\min _{k=i}^{j-1}(\operatorname{Best}(i, \underbrace{\operatorname{Best}(i, i)+\operatorname{Best}(k}_{\substack{\text { Read from } \mathrm{M}[n] \\ \text { if present }}}+1, j)+r_{i} r_{k+1} c_{j})$
$\operatorname{Best}(1, n)=\min \underbrace{\operatorname{Best}(2, n)+r_{1} r_{2} c_{n}}_{\text {Save to } \mathrm{M}[\mathrm{n}]} \begin{aligned} & \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\ & \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\ & \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\ & \ldots \\ & \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}\end{aligned}$

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

Matrix Chaining

Run Time

1. Initialize $\operatorname{Best}[i, i]$ to be all $0 s \quad \Theta\left(n^{2}\right)$ cells in the Array
2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

Each "call" to Best() is a O(1) memory lookup

1. Best $[i, i]=0$
$\Theta(n)$ options for each cell
2. $\operatorname{Best}[i, j]=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$

$$
\Theta\left(n^{3}\right) \text { overall run time }
$$

Backtrack to find the best order

"Remember" which choice of k was the minimum at each cell. Intuitively this was the best place to "split" for that range (i, j).

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
- Choice $[i, j]=k$ means the best "split" was right after M_{k}
- Work backwards from value for whole problem, Choice[1,n]
- Note: Choice $[i, i+1]=i$ because there are just 2 matrices
- From our example:
- Choice[1,6] = 3. So $\left[M_{1} M_{2} M_{3}\right]\left[M_{4} M_{5} M_{6}\right]$
- We then need Choice $[1,3]=1$. So $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]$
- Also need Choice $[4,6]=5$. So $\left[\left(M_{4} M_{5}\right) M_{6}\right]$
- Overall: [($\left.\left.\mathrm{M}_{1}\right)\left(\mathrm{M}_{2} \mathrm{M}_{3}\right)\right]\left[\left(\mathrm{M}_{4} \mathrm{M}_{5}\right) \mathrm{M}_{6}\right]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:

$X=$ ATCTGAT
$Y=T G C A T A$
$L C S=T C T A$
$X=A T \quad C \quad$ TGAT
$Y=\operatorname{TGCAT} A$

Brute force: Compare every subsequence of X with $Y: \Omega\left(2^{n}\right)$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\begin{aligned}
& \text { Case 1: } X[i]=Y[j] \quad \begin{array}{ll}
X=\text { ATCTGCGT } \\
& Y=\text { TGCATAT }
\end{array} \\
& \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j-1)+1 \\
& \text { Case 2: } X[i] \neq Y[j] \\
& X=A T C T G C G A \quad X=A T C T G C G A \\
& Y=\text { TGCATAG } \quad Y=\text { TGCATAG } \\
& \operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) \quad \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j) \\
& \operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\
\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$
\begin{aligned}
& \operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& L C S(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
\end{aligned}
$$

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

LCS Length Algorithm

LCS-Length(X, Y)

1. $m=$ length $(X) / /$ get the $\#$ of symbols in X
2. $\mathrm{n}=$ length $(\mathrm{Y}) / /$ get the $\#$ of symbols in Y
3. for $\mathrm{i}=1$ to $\mathrm{m} \quad \mathrm{M}[\mathrm{i}, 0]=0 / /$ special case: Y_{0}
4. for $\mathrm{j}=1$ to $\mathrm{n} \quad \mathrm{M}[0, j]=0 / /$ special case: X_{0}
5. for $i=1$ to $m \quad / /$ for all X_{i}
6. for $\mathrm{j}=1$ to $\mathrm{n} \quad / /$ for all Y_{j}
7. \quad if $(X[i]==Y[j])$
8.

$M[i, j]=M[i-1, j-1]+1$
9. \quad else $\mathrm{M}[i, j]=\max (\mathrm{M}[\mathrm{i}-1, \mathrm{j}], \mathrm{M}[\mathrm{i}, \mathrm{j}-1])$
10. return $\mathrm{M}[\mathrm{m}, \mathrm{n}] / /$ return LCS length for X and Y

Run Time?

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

$X=$		0	A 1	T 2	$\begin{aligned} & C \\ & 3 \end{aligned}$	T	$\begin{aligned} & G \\ & 5 \end{aligned}$	A 6	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
	6	0	1	2	2	3	3	4	4

Run Time: $\Theta(n \cdot m)($ for $|X|=n,|Y|=m)$

Reconstructing the LCS

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\begin{aligned}
& \operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
\end{aligned}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

