

Dynamic Programming, Part Deux

- Our mid-term is coming!
- Spring Break's also coming!
- You'll make it! ⁽ⁱ⁾ Hang in there!!!

Midterm

- Wednesday, March 4 in class
 - SDAC: Please schedule with SDAC for Wednesday
 - Mostly in-class with a (required) take-home portion
 - Take-home "bonus" If you do better on take-home than on its "starter" question on the in-class, you can earn back half the difference.
- Practice Midterm <u>and Solutions</u> on Collab
- Review Session on Panopto
- More office hours by me! See Piazza

Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Seam Carving

CLRS Readings

- Chapter 15
 - Section 15.1, Log/Rod cutting, optimal substructure property
 - Note: r_i in book is called Cut() or C[] in our slides. We use their example.
 - Section 15.3, More on elements of DP, including optimal substructure property

–Section 15.2, matrix-chain multiplication

-Section 15.4, longest common subsequence

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Matrix Chaining

 Given a sequence of Matrices (M₁, ..., M_n), what is the most efficient way to multiply them?

Order Matters!

• $(\underline{M_1} \times \underline{M_2}) \times \underline{M_3}$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations

Order Matters!

 $c_1 = r_2$
 $c_2 = r_3$

• $M_1 \times (M_2 \times M_3)$

- uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations

Order Matters!

 $c_1 = r_2$ $c_2 = r_3$

• $(\underline{M_1} \times \underline{M_2}) \times \underline{M_3}$

- uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations - $(10 \cdot 7 \cdot 20) + 20 \cdot 7 \cdot 8 = 2520$

- $M_1 \times (M_2 \times M_3)$
 - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations - $10 \cdot 7 \cdot 8 + (20 \cdot 10 \cdot 8) = 2160$

 $M_{1} = 7 \times 10$ $M_{2} = 10 \times 20$ $M_{3} = 20 \times 8$ $c_{1} = 10$ $c_{2} = 20$ $c_{3} = 8$ $r_{1} = 7$ $r_{2} = 10$ $r_{3} = 20$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

• In general:

 $Best(i,j) = \text{cheapest way to multiply together } M_i \text{ through } M_j$ $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0 Best(1,i) = 0 $Best(1,2) + Best(3,n) + r_1 r_3 c_n$ $Best(1,2) + Best(4,n) + r_1 r_4 c_n$ $Best(1,4) + Best(5,n) + r_1 r_5 c_n$... $Best(1,n-1) + r_1 r_n c_n$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

• In general:

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

• In general:

Matrix Chaining

$$35 15 5 10 20 25$$

$$30 M_1 \times 35 M_2 \times 15 M_3 5 M_4 \times 10 M_5 \times 20 M_6$$

$$Best(i,j) = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_ir_{k+1}c_j)$$

$$Best(i,i) = 0 j = 1 2 3 4 5 6$$

$$0 15750 7875 9375 11875 15125 1$$

$$0 2625 4375 7125 10500 2$$

$$0 750 2500 5375 3$$

$$Best(1,6) = \min_{k=i}^{k=i} (Best(1,2) + Best(2,6) + r_1r_2c_6 0 1000 3500 4$$

$$Best(1,6) = \min_{k=i}^{k=i} (Best(1,3) + Best(4,6) + r_1r_4c_6 0 5)$$

$$Best(1,6) = \min_{k=i}^{k=i} (Best(1,5) + Best(6,6) + r_1r_6c_6 0 6)$$

Run Time

- 1. Initialize Best[i, i] to be all 0s $\Theta(n^2)$ cells in the Array
- 2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

1.
$$Best[i,i] = 0$$

2. $Best[i,j] = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j)$
Each "call" to Best() is a O(1) memory lookup

$\Theta(n^3)$ overall run time

Backtrack to find the best order

"Remember" which choice of k was the minimum at each cell. Intuitively this was the best place to "split" for that range (i,j).

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
 - Choice[i,j] = k means the best "split" was right after M_k
 - Work backwards from value for whole problem, Choice[1,n]
 - Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
 - Choice[1,6] = 3. So $[M_1 M_2 M_3] [M_4 M_5 M_6]$
 - We then need Choice[1,3] = 1. So $[(M_1) (M_2 M_3)]$
 - Also need Choice[4,6] = 5. So $[(M_4 M_5) M_6]$
 - Overall: $[(M_1) (M_2 M_3)] [(M_4 M_5) M_6]$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:

X = ATCTGATY = TGCATALCS = TCTA

 $X = AT \quad C \quad TGAT$ $Y = \quad TGCAT \quad A$

Brute force: Compare every subsequence of X with Y: $\Omega(2^n)$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> Case 1: X[i] = Y[j] X = ATCTGCGT Y = TGCATAT LCS(i,j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X = ATCTGCGA Y = TGCATAG LCS(i,j) = LCS(i,j - 1) LCS(i,j) = LCS(i,j - 1) LCS(i,j) = CS(i - 1, j - 1) + 1 max(LCS(i, j - 1), LCS(i - 1, j)) X = ATCTGCGA Y = TGCATAG $LCS(i,j) = -\begin{bmatrix} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i, j - 1), LCS(i - 1, j) & \text{otherwise} \end{bmatrix}$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> Case 1: X[i] = Y[j] X = ATCTGCGT Y = TGCATAT LCS(i,j) = LCS(i-1,j-1) + 1Case 2: $X[i] \neq Y[j]$ X = ATCTGCGA Y = TGCATAT LCS(i,j) = LCS(i,j-1) LCS(i,j) = LCS(i,j-1) $LCS(i,j) = -\begin{bmatrix} 0 \\ LCS(i-1,j-1) + 1 \end{bmatrix}$ Read from M[i,j] if i = 0 or j = 0if X[i] = Y[j]max(LCS(i,j-1), LCS(i-1,j)) otherwise

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 \\ LCS(i-1,j-1) + 1 \\ max(LCS(i,j-1), LCS(i-1,j)) \end{cases}$$

if i = 0 or j = 0if X[i] = Y[j]otherwise

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

LCS Length Algorithm

LCS-Length(X, Y)1. m = length(X) // get the # of symbols in X2. n = length(Y) // get the # of symbols in Y 3. for i = 1 to m M[i,0] = 0 // special case: Y₀ 4. for j = 1 to n M[0,j] = 0 // special case: X_0 5. for i = 1 to m // for all X_i 6. for j = 1 to n // for all Y_i 7. if(X[i] == Y[i])8. M[i,j] = M[i-1,j-1] + 1else M[i,j] = max(M[i-1,j], M[i,j-1])9. 10. return M[m,n] // return LCS length for X and Y

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if} \\ LCS(i-1,j-1)+1 & \text{if} \\ \max(LCS(i,j-1),LCS(i-1,j)) & \text{ot} \end{cases}$$

if i = 0 or j = 0if X[i] = Y[j]otherwise

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

1,*j*))

$$LCS(i,j) = - \begin{cases} 0 \\ LCS(i-1,j-1) + 1 \\ max(LCS(i,j-1), LCS(i-1)) \\ max(LCS(i,j-1), LCS(i-1)) \\ max(LCS(i,j-1)) \\ max(LCS(i,j-1)) \\ max(LCS(i-1)) \\ max(LCS(i-$$

if i = 0 or j = 0if X[i] = Y[j]otherwise

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

$$LCS(i,j) = -\begin{cases} 0\\ LCS(i-1,j-1) + 1\\ max(LCS(i,j-1), LCS(i-1,j)) \end{cases}$$

if i = 0 or j = 0if X[i] = Y[j]otherwise

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

$$LCS(i,j) = -\begin{cases} 0\\ LCS(i-1,j-1) + 1\\ max(LCS(i,j-1), LCS(i-1,j)) \end{cases}$$

if i = 0 or j = 0if X[i] = Y[j]otherwise

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent