
Spring 2020 – Horton’s Slides
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Dynamic Programming, Part Deux

• Our mid-term is coming!
• Spring Break’s also coming!

• You’ll make it! J Hang in there!!!



Midterm

• Wednesday, March 4 in class
– SDAC: Please schedule with SDAC for Wednesday
– Mostly in-class with a (required) take-home portion
– Take-home “bonus” – If you do better on take-home than on its 

”starter” question on the in-class, you can earn back half the 
difference.

• Practice Midterm and Solutions on Collab
• Review Session on Panopto
• More office hours by me!  See Piazza
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Today’s Keywords

• Dynamic Programming
• Longest Common Subsequence
• Seam Carving
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CLRS Readings

• Chapter 15
– Section 15.1, Log/Rod cutting, optimal substructure property

• Note: ri in book is called Cut() or C[] in our slides.  We use their example.

– Section 15.3, More on elements of DP, including optimal substructure 
property

–Section 15.2, matrix-chain multiplication
–Section 15.4, longest common subsequence
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Matrix Chaining
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• Given a sequence of Matrices (𝑀",… ,𝑀,), what is the most 
efficient way to multiply them?

𝑀% 𝑀(



Order Matters!

• 𝑀"×𝑀% ×𝑀'
– uses 𝑐" ⋅ 𝑟" ⋅ 𝑐% + c% ⋅ 𝑟" ⋅ 𝑐' operations
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Order Matters!

• 𝑀"×(𝑀%×𝑀')
– uses c" ⋅ r" ⋅ 𝑐' + (c% ⋅ 𝑟% ⋅ 𝑐') operations
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Order Matters!

• 𝑀"×𝑀% ×𝑀'
– uses 𝑐" ⋅ 𝑟" ⋅ 𝑐% + c% ⋅ 𝑟" ⋅ 𝑐' operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• 𝑀"×(𝑀%×𝑀')
– uses 𝑐" ⋅ 𝑟" ⋅ 𝑐' + (c% ⋅ 𝑟% ⋅ 𝑐') operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160
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𝑐" = 𝑟%
𝑐% = 𝑟'

𝑐" = 10
𝑐% = 20
𝑐' = 8
𝑟" = 7
𝑟% = 10
𝑟' = 20

𝑀" = 7×10
𝑀% = 10×20
𝑀' = 20×8



Dynamic Programming
• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify the Recursive Structure of the Problem
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𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀" through 𝑀,

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟"𝑟%𝑐(

𝑐(
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀F through 𝑀G

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟"𝑟%𝑐,
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟"𝑟'𝑐,
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟"𝑟(𝑐,
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟"𝑟H𝑐,
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟"𝑟,𝑐,

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
GJ"

KLF
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟F𝑟KN"𝑐G

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0



Dynamic Programming
• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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2. Save Subsolutions in Memory

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀F through 𝑀G

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟"𝑟%𝑐,
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟"𝑟'𝑐,
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟"𝑟(𝑐,
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟"𝑟H𝑐,
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟"𝑟,𝑐,

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
GJ"

KLF
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟F𝑟KN"𝑐G

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



Dynamic Programming
• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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3. Select a good order for solving subproblems

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀F through 𝑀G

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟"𝑟%𝑐,
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟"𝑟'𝑐,
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟"𝑟(𝑐,
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟"𝑟H𝑐,
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟"𝑟,𝑐,

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
GJ"

KLF
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟F𝑟KN"𝑐G

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
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3. Select a good order for solving subproblems
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

𝑗 =
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3. Select a good order for solving subproblems
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𝑗 =
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3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding 
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖



Matrix Chaining
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𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟"𝑟(𝑐O
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𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟"𝑟O𝑐O
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𝑗 =
= 𝑖



Run Time

1. Initialize 𝐵𝑒𝑠𝑡[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right, 

fill in each cell using:
1. 𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. 𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
GJ"

KLF
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟F𝑟KN"𝑐G
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Θ(𝑛%) cells in the Array

Θ(𝑛) options for each cell

Θ(𝑛') overall run time

Each ”call” to Best() is a
O(1) memory lookup



Backtrack to find the best order

2727

“Remember” which choice of 𝑘 was the minimum at each cell.
Intuitively this was the best place to “split” for that range (i,j).
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𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟"𝑟'𝑐O
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟"𝑟(𝑐O
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𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟"𝑟O𝑐O
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Matrix Chaining
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1 2 3 4 5 6

1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟"𝑟%𝑐O
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟"𝑟'𝑐O
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟"𝑟(𝑐O
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟"𝑟H𝑐O
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟"𝑟O𝑐O

15125

𝑗 =
= 𝑖

31
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Storing and Recovering Optimal Solution

• Maintain table Choice[i,j] in addition to Best table
– Choice[i,j] = k means the best “split” was right after Mk

– Work backwards from value for whole problem, Choice[1,n]
– Note: Choice[i,i+1] = i because there are just 2 matrices 

• From our example:
– Choice[1,6] = 3.   So [M1 M2 M3] [M4 M5 M6]
– We then need Choice[1,3] = 1.   So [(M1) (M2 M3)]
– Also need Choice[4,6] = 5.  So [(M4 M5) M6]
– Overall: [(M1) (M2 M3)] [(M4 M5) M6]

29



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

30



Longest Common Subsequence

31

Given two sequences 𝑋 and 𝑌, find the 
length of their longest common subsequence 

Example:
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐴𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴
𝐿𝐶𝑆 = 𝑇𝐶𝑇𝐴

𝑋 = 𝐴𝑇 𝐶 𝑇𝐺𝐴𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇 𝐴

Brute force: Compare every subsequence of 
𝑋 with 𝑌:   Ω(2,)



Dynamic Programming
• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

32



1. Identify Recursive Structure
Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

33

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑻
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑻

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑨
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑮

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑨
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑮

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise



Dynamic Programming
• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

34



1. Identify Recursive Structure

35

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝐴
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝐶

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwiseSave to M[i,j]

Read from M[i,j] 
if present

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Avoid extra work due to overlapping subproblems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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3. Solve in a Good Order

37

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶

𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)
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LCS Length Algorithm
LCS-Length(X, Y)
1. m = length(X)  // get the # of symbols in X
2. n  = length(Y) // get the # of symbols in Y
3. for i = 1 to m M[i,0] = 0 // special case: Y0

4. for j = 1 to n  M[0,j] = 0 // special case: X0

5. for i = 1 to m // for all Xi

6. for j = 1 to n  // for all Yj

7. if ( X[i] == Y[j] )
8. M[i,j] = M[i-1,j-1] + 1
9. else M[i,j] = max( M[i-1,j], M[i,j-1] )
10. return M[m,n]   // return LCS length for X and Y



Run Time?
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶

𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶

𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶

𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶

𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 


