CS4102 Algorithms

Spring 2020 — Horton’s Slides

Reminder Warm-Up
Compare f(n + m) with f(n) + f(m)
When f(n) = 0(n)

When f(n) = Q(n)

f(n) € 0(n)

—40 /
/

f(m)

€A
f / f(n) f(m) f(n)

14
n—+m

f(n+m) < f(n)+ f(m)

f(n) € Q(n)

f(n+m) = f(n) + f(m)
300 /
f(m)
N
w— ¥ fm)
e F

30 100 120 140
n m n—+m

f(n) € 6(n)

300

fn+m) = f(n) + f(m)

200

Fom
Yl
X
0 f(m) f(n)

n m n+m

Guess the solution to this recurrence:

T(n)=T(§)+T(i—g)+c-n

wherec > 1
IS a constant

Tm)=Tn/5) +T(7n/10)+c-n

- R .
Y Tn on If this was T (i—’;), then can
T = 10 <n use Master’s Theorem to
. AT conclude O(n))
Guess: O(n)

Suffices to show O(n) since non-recursive cost is already Q(n)

6

T(n)=Tn/5)+T(7n/10)+c-n

Claim: T(n) < 10cn

Base Case: T(0) =0
T(1) = ¢ < 10c which is true sincec > 1

Strictly speaking, we can handle any
¢ > 0, but assumingc = 1 to
simplify the analysis here

T(n)=Tn/5)+T(7n/10)+c-n

Inductive hypothesis: Vn < x, : T(n) < 10cn

Inductive step:

T(xo +1) =T(§(x0 +1))+T<%(xo +1))+c(x0 +1)

1 7
<=+ —
< (5 + 10) 10c(xg + 1) + c(xo + 1)

=9c(xg+1)+c(xg+1) =10c(xg + 1)

Today's Keywords

* Divide and Conquer

e Strassen’s Algorithm
* Sorting
* Quicksort

CLRS Readings

* Chapter 7
* Chapter9

10

Homeworks

e HW3 due 11pm tomorrow

— Programming (use Python or Javal)
— Divide and conquer
— Closest pair of points

* HW4 coming soon
— Written, using LaTeX

11

Review: Quicksort

Idea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select pivot element p, Partition(p)
* Conquer: recursively sort left and right sublists
* Combine: Nothing!

12

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

. 5 7 3 12 | 10 1 2 4 9 6 11

Goal: All elements on left, all > p on right

13

Partition Summary

1. Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the
end of the list

3. While < End:

1. If value < p, move right

2. Else swap value with End value, move End Left
4. If pointers meet at element : Swap p with

5. Else If pointers meet at element > p: Swap p with

Run time? 0(n)

14

Conqguer
|

All elements < p All elements > p

Exactly where it belongs!

Recursively sort and Right sublists

15

Quicksort Run Time (Best)

If the pivot is always the median:

Then we divide in half each time

n
T(n) =2T (5) +n
T(n) = 0(nlogn)

16

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

_

Then we shorten by 1 each time
Tm)=Tn—-1)+n

T(n) = 0(n?)

17

How to pick the pivot?

CLRS, Chapter 9

(Good Pivot

 What makes a good Pivot?

— Roughly even split between left and right
— Ideally: median
 Can we find median in linear time?

— Yes!
— Quickselect

19

Quickselect

* Finds it" order statistic

— ith smallest element in the list
— 15t order statistic: minimum
— nth order statistic: maximum

n . . .
— Eth order statistic: median

* CLRS, Section 9.1

— Selection problem: Give list of distinct numbers and value j, find
value x in list that is larger than exactly i-1 list elements

20

Quickselect

Idea: pick a pivot element, partition, then recurse on sublist
containing index i

* Divide: select an element p, Partition(p)
* Conquer:ifi =index of p, done!

— if i <index of p recurse left. Else recurse right

* Combine: Nothing!

21

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 12 | 10 1 2 4 9 6 11

Goal: All elements on left, all > p on right

22

Conqguer
|

All elements < p All elements > p

Exactly where it belongs!

Recurse on sublist that contains index i
(adjust i accordingly if recursing right)

23

CLRS Pseudocode

RANDOMIZED-SELECT (A, p,r,i)

elseif i < k
return RANDOMIZED-SELECT (A4, p,q — 1,1i)
else return RANDOMIZED-SELECT(A,q + 1,r,i —

1 ifp==r

2 return A[p]

3 g = RANDOMIZED-PARTITION(A, p,r)

4 k =qg—p+1 [/ number of elements on left-side of pivot
5 ifi== // the pivot value is the answer

6 return A[q]

7

8

9

// note adjustment to next call’s i

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment. 24

Work These =xamples!

* For each of the following calls, show

— The value of g after each partition,

— Which recursive calls made

1. Select(
2. Select(
3. Select(

:3I 2) 9) OI 7) 5) 6’ 1:
:31 2) 9I OI 7) 5I 6I 1:

, p=0, r=7, i=2)
, p=0, r=7, i=5)

:31 2) 9I OI 7) 5) 6I 1:

, p=0, r=7, i=7)

25

Quickselect Run Time

If the pivot is always the median:

Then we divide in half each time

n
S(n) = S(E) +n
S(n) =0(n)

26

Quickselect Run Time

If the partition is always unbalanced:

_

Then we shorten by 1 each time

S(n)=Sn—1)+n

S(n) = 0(n?)

27

(Good Pivot

 What makes a good Pivot? 2

— Roughly even split between left and right QO ’
— Ideally: median

B

g ° ’b
0@
e Here’s what’s next:

— An algorithm that can find the median in linear time
1. It starts by finding a pivot that is a “rough” split (Median of Medians)

2. Uses that pivot with Quickselect shown earlier to recursively find median

— (Recall that Quickselect shown earlier used first element to do Partition.
Now use the pivot value found in step 1.)

28

(Good Pivot

 What makes a good Pivot?

— Both sides of Pivot >30%
>30%

O Select Pivot from
r this range

>30%
29

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than 30% of elements and less than
30% of the elements

Idea: break list into chunks, find the median of each chunk, use
the median of those medians

CLRS, pp. 220-221

30

Median of Medians

1. Break list into chunks of size 5

2. Find the median of each chunk
(using insertion sort: n=5, 20 comparisons)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

[11

31

VWhy is this good?

Imagine each chunk sorted, chunks ordered by their medians

—

MedianofMedians
is Greater than all
of these A A A A A

< <0< < — 5
N /\ /\ N\ N

AN AN AN AN

A AN AN AN AN

n

Why Is this good*?

MedianofMedians
is larger than all
of these '} A x < <

A A A A A Worried about the details of
this math? See CLRS p. 221

Larger than 3

Y.
things in each [g
(butone)listto _ /1 an
the left 3 (E' 51 2) ~ 1o~ 6 elements <[

n

3
— 2) = 6 elements > []

Similarly: 3 G

@3

33

Quickselect

* Divide: select an element p using Median of Medians,
Partition(p) M(n) + 0(n)

* Conquer: ifi = index of p, done, if i < index of p recurse left.

Else recurse right 7
<3S (—n)
10

* Combine: Nothing!

S(n)<S (%n) + M(n) + 0(n)

34

Median of Medians, Run Time

1. Break list into chunks of 5 ©(1)

2. Find the median of each chunk ©(n)

3. Return median of medians (using Quickselect)

) S (g)

Mn) =S (g) + 0(n)

35

Quickselect

n (M
Sn)<S (E) + M(n) + 0(n) M) =S (g) +0(n)
—S(7n) +S(n) +0
~~\10 5) T o0
... Guess and Check ... Warm Up!
S(n) = 0(n)
S(n) = Q(n) Linear work done at top level (even if no recursion costs)

S(n) = 0(n)

36

Compare to ‘Obvious” Approach

e An “obvious” approach to Selection Problem:
— Given list and value i: Sort list, then choose i-th item
— We'’ve only seen sorting algorithms that are (0(n logn)
— Later we’ll show this really is a lower-bound
— So this approach is O(nlogn)

* Therefore Quickselect is asymptotically better than this
sorting-based solution for Selection Problem!

37

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition,
we’re guaranteed to use true median, so:

Then we divide in half each time

n
T(n) = 2T (5) + 0(n)
T(n) = 0(nlogn)

38

IS It worth it7

* Using Quickselect to pick median guarantees ®(nlogn) run
time

* Approach has very large constants
— If you really want ®(n logn), better off using MergeSort

* Better approach: Random pivot
— Very small constant (very fast algorithm)

— Expected to run in ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

* But let’s explore “very uneven partitions” in the next slides...

39

Quicksort Run Time

h order statistic:

If the pivot is always 1"_0t

T(n):T(f—O)+T<?—g)+n

40

m—

T(n) =T(

n/10

n/100

+

On /100

10

n

n

n/10

I9n/10

I

ef”””/”“\\\\\\“~$
+ 9n/10

7/100 81n,/100

n On
‘——) +'71(12;) +n

9n/10

On/100| +

1

1

+

81n/100

AN

n

>log(

10

)Tl

Quicksort Run Time

If the pivot is always 1”—0”‘ order statistic:

T(n):T(f—O)+T<?—g)+n

T(n) = O(nlogn)

42

Quicksort Run Time

If the pivot is always d™ order statistic:

_

Then we shorten by d each time
Tn)=T(n—-d)+n
T(n) = 0(n?)
What’s the probability of this occurring?

43

Probability of n? run time

We must consistently select pivot from within the first d terms

ope . H 1 d
Probability first pivot is among d smallest: =

o e H H d
Probability second pivot is among d smallest: n—d

Probability all pivots are among d smallest:
d d d d 1
n n—d n—2d = 2d (),

Worst-case, d=1, and the probability is very, very small!

44

~ormal Argument for nlogn Average

* Remember, run time counts comparisons!
* Quicksort only compares against a pivot

— Element i only compared to element j if one of
them was the pivot

45

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 12 | 10 1 2 4 9 6 11

Goal: All elements on left, all > p on right

46

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared

— Why? Otherwise | would not know which came first
— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 7

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7.9 10 | 11 | 12

Consider the sorted version of the list

Pr{we compare 1 and 12] = 2 [Assuming pivot is chosen }

E uniformly at random

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

48

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

L J

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be in right sublist and will be
processed in future recursive invocation of Quicksort

Pr[we compare i and j] = Pr[we compare i and j in Quicksort([p + 1, ..., n])]

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

L J

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be
processed in future recursive invo

[p + 1, ...,n] denotes the right
sublist (in some order) that we are
recursively sorting

Pr[we compare i and j] = Pr[we compare i and j in Quicksort([p + 1, ..., n])]

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

L J

Case 2: Pivot greater than j
Then sublist [i,i + 1, ..., j] will be in left sublist and will be
processed in future recursive invocation of Quicksort

Pr[we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])]

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6.8 9 10 | 11 | 12

L J

Case 3.1: Pivot contained in [i + 1, ...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiandj] =0

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4.6 7 8 9 10 | 11 | 12

L J

Case 3.2: Pivot is either i orj
Then we will always compare i and j

Pr[we compareiandj] =1

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 | 11 | 12

L J
Case 1: Pivot less than i
Pr[we compare i and j] = Pr[we compare i and j in Quicksort([p + 1, ..., n])]
Case 2: Pivot greater than j
Pr[we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])]
Case 3: Pivotin [i,i + 1, ...,]]

Pr[we compare i and j] = Pr[i or j is selected as pivot] = 2

j—i+1

~ormal Argument for nlogn Average

Probability of comparing i with j (j > i):

— dependent on the number of elements between (and including)
[andj
2
j—i+1

Expected number of comparisons for Quicksort:

z 2
— n
j—i+1 zz
< et]—l+1

55

Expected number of Comparisons

n
Consider wheni =1 z 2

1 2 3 4 5 6 7 8 9 10 | 11 | 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

2
Sum so far: >

56

Expected number of Comparisons

n
Consider wheni =1 z 2

1 2 3 4 5 6 7 8 9 10 | 11 | 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

2 2
Sum so far: §+ S

57

Expected number of Comparisons

n
Consider wheni =1 z 2

1 2 3 4 5 6 7 8 9 10 | 11 | 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

2 2 2
Sumso far: —+ —+ —
2 3 4

58

Expected number of Comparisons

n
Consider wheni =1 z 2

1 2 3 4 5 6 7 8 9 10 | 11 | 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

Overallsum: 2+ 2+ 2424 .. 42
2 3 4 5 n

59

Expected number of Comparisons

Z 2
j—i+1

i<j

Wheni = 1:

O(logn)

[M]=
R

2(1+1+1+ +1><2
2 3 4 n

=
Il
[uEy

60

~ormal Argument for nlogn Average

* Probability of comparing element i with element j:

2
j—i+1

* Pr[we compareiandj]| =

e Expected number of comparisons:

- -1 n—
z —i1+1 2 z <2
=1 j=i+1 =1 k=1
Substltutlon
=] —1

“M=
& =
N
N
1=
& =

iy
Il
(U
w
Il
(U
~.
Il
(U
RA
Il
(U

61

wu—x

~ormal Argument for nlogn Average

=1 j=i+1 i=1 k=1 i=1 k=1 =1 k=1
Substitution: 1 < 1
k=j—1i k+1 k
a - N
n 1 Intuition (not proof!):
Useful fact: z — = 0O(logn) zn:lz j"}dx .
i=1 l i=1i 1 X

~ormal Argument for nlogn Average

& =

n -1 n—-i n-1n-i n-1 n
, —i+1 k+1 k :
=i i=1 k=1 i=1 k=1 =1 k=1

= 2 O(logn) = O(nlogn)
2

Quicksort overall: expected O(nlogn)

63

Sorting, so far

* Sorting algorithms we have discussed:
— Mergesort O(nlogn)
— Quicksort O(nlogn)

e Other sorting algorithms (will discuss):
— Bubblesort 0(n*)
— Insertionsort 0(n?)
— Heapsort O(nlogn)

Can we do better than O(nlogn)?

64

Mental Stretch

Show log(n!) = O(nlogn)

Hint: show n! < n"
n
2

Hint 2: show n! > (721)

65

logn! = 0(nlogn)

n=n-n-1))-n-2)-..-2-1

A A A A
nm=n- n - n -..on-n
n!<n™

= log(n!) < log(n™)
= log(n!) < nlogn
= log(n!) = O(nlogn)

logn! = Q(nlogn)

cet 201

Vol

= log(n!) > log <(12—l)721>

1 (')>nl z
= _ — —
og(n!) = ~log

= log(n!) = Q(nlogn)

Worst Case [Lower Bounds

* Prove that there is no algorithm which can sort faster than
O(nlogn)

* Non-existence proof!
— Very hard to do

68

Strategy: Decision Tree

e Sorting algorithms use comparisons to figure out the
order of input elements

 Draw tree to illustrate all possible execution paths

Possible Result of

execution path comparison

[>or<?][>or<?][>or<?]

?][>or<?][>or<?][>or<?] [>or<?]

Permutation

[Eris] [Btz] of sorted list

[[1,2,3,4,5]] [[2,1,8,4,5]]

69

Strategy: Decision Tree

* Worst case run time is the longest execution path
* i.e., “height” of the decision tree

Possible Result of
comparison

—

execution path

log(n!)" ? ><;r<? >or<?
o EDEDED

?][>or<?][>or<?][>or<?] [>or<?]

(w2345) (283451) ~ (524131) - (154321) z]‘fg;‘r‘izad“fi’;;

\ J
|

n! Possible permutations

70

Strategy: Decision Tree

e Conclusion: Worst Case Optimal run time of sorting is

®(nlogn)
— There is no (comparison-based) sorting algorithm with run time
o(nlogn)
Possible Result of

comparison

—

execution path

log(n!)" ? ><;r<? >or<?
o EDEDED

?][>or<?][>or<?][>or<?] [>or<?]

(w2345) (283451) ~ (524131) - (154321) z]‘fg;‘r‘izad“fi’;;

\ J
|

n! Possible permutations

71

Sorting, so far

* Sorting algorithms we have discussed:
— Mergesort O(nlogn) Optimal!
— Quicksort O(nlogn) Optimal!

e Other sorting algorithms (will discuss):

— Bubblesort 0(n?%)
— Insertionsort 0(n?)
— Heapsort O(nlogn) Optimal!

72

Speed Isn't Bverything

* Important properties of sorting algorithms:

* RunTime

— Asymptotic Complexity

— Constants
* |In Place (or In-Situ)

— Done with only constant additional space
e Adaptive

— Faster if list is nearly sorted
e Stable

— Equal elements remain in original order
e Parallelizable

— Runs faster with many computers

73

NVergesort

e Divide: Run Time?

— Break n-element list into two lists of */, elements
 Conquer: @(Tl log Tl)
— Ifn > 1:Sort each sublist recursively Opt|ma| |

— If n = 1: Listis already sorted (base case)

 Combine:
— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)

* Combine: Merge sorted sublists into one sorted list
 We have:

— 2 sorted lists (L1, L,)
— 1 output list (Lyye)

While (L, and L, not empty): Adaptive:
If L;]0] < L,[0]: If elements are

L,,;.append(L,.pop()) | €aual leftmost
Else: comes first

Loy:-append(L,.pop())
Lyy¢-append(L,)
Lyy¢-append(L;)

75

NVergesort

Divide:
— Break n-element list into two lists of */, elements
Conquer:

— Ifn > 1:Sort each sublist recursively
— If n = 1: Listis already sorted (base case)

Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)

Run Time?

O(nlogn)
Optimal!

Parallelizable?

Yes!

76

NVergesort

Parallelizable:
 Divide: AIIow'dlfferent
L , machines to work
— Break n-element list into two lists of "/, elements| . ..ch cublict

* Conquer:

—Ifn>1:
* Sort each sublist recursively

—Ifn = 1:
* Listis already sorted (base case)
e Combine:
— Merge together sorted sublists into one sorted list

77

Mergesort (Sequential)

n total / level

53
~
(N

N |
>
N

>log, n levels

n/4 |+ | n/4

Y Y N Y N\ VAN of recursion
: . 1' 1 1 . 1

1 1 1 XX 1 1 1 J

Run Time: ©(nlogn)

Mergesort (Parallel)

T(n) =T(g)+n

n

Done in PW\ n
n n 2
n/2 |2 n/2 |2

— 7~ i = T~

n/4 4| n/4 n/4 ' n/4
/N /N

NE
N

/. /\
E -\ F . £ <N K. N\
e :] 1
1 1 1 1 1 1
1 1 1 1 1 1

Run Time: O(logn)

Quicksort

' ?
* Idea: pick a partition element, recursively sort Run Time:
two sublists around that element @ (n lOg n)

* Divide: select an element p, Partition(p) . |
| | | | Optimal!
e Conquer: recursively sort left and right sublists

* Combine: Nothing! (almost always)

In Place? Adaptive? Stable? Parallelizable?
No... No! No Yes!

