
Spring 2020

Warm up
Given 5 points on the unit equilateral 
triangle, show there’s always a pair of 

distance ≤ "
#

apart
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If points 𝑝", 𝑝# in same quadrant, then 𝛿 𝑝", 𝑝# ≤ "
#

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Spring 2020
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Today’s Keywords

• Divide and Conquer
• Closest Pair of Points
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CLRS Readings

• Chapter 4
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Homeworks

• HW2 due Thursday 2/6 at 11pm
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Master Theorem
– Divide and Conquer
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Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
6
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Master Theorem

Case 1: if 𝑓 𝑛 ∈ 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, 
then 𝑇 𝑛 ∈ Θ 𝑛,-./ 0

Case 2: if 𝑓 𝑛 ∈ Θ(𝑛,-./ 0), then 𝑇 𝑛 ∈ Θ(𝑛,-./ 0 log 𝑛)

Case 3: if 𝑓 𝑛 ∈ Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, 
and if 𝑎𝑓 ?

@
≤ 𝑐𝑓(𝑛) for some constant 𝑐 < 1

and all sufficiently large 𝑛, 
then 𝑇 𝑛 ∈ Θ(𝑓 𝑛 )
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𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏

+ 𝑓(𝑛)



3 Cases
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𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎#𝑓

𝑛
𝑏#

+ 𝑎G𝑓
𝑛
𝑏G

+ ⋯+ 𝑎I𝑓(
𝑛
𝑏I
)

Case 1:
Most work 
happens at 
the leaves

Case 2:
Work happens  
consistently 
throughout

Case 3:
Most work 
happens at 
top of tree

𝐿 = log@ 𝑛



Historical Aside: Master Theorem
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Jon Bentley Dorothea Haken James Saxe

No Picture Found



Master Theorem Example 1

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant 

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )
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𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

Case 2

Θ 𝑛,-.L # log 𝑛 = Θ(𝑛 log 𝑛)



Tree method
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𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

+

+ + +

+ + + + +

log# 𝑛



Master Theorem Example 2

12

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

Case 1

Θ 𝑛,-.L Q = Θ(𝑛#)

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant 

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Tree method
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …
1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2,-.L ? ⋅ 5𝑛

…



Tree method
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𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2,-.L ? ⋅ 5𝑛

…

Cost is increasing with the recursion depth 
(due to large number of subproblems)

Most of the work happening in the leaves



Master Theorem Example 3

15

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Case 1

Θ 𝑛,-.L G ≈ Θ(𝑛".X)

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant 

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Karatsuba
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𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

𝑛 8𝑛

8𝑛
2

8𝑛
2

8𝑛
2

𝑛
2

𝑛
2

𝑛
2

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

8 8 8 8 8 8 8 8 8 8

… … … … … …
1 1 1 1 1 1 1 1 1 1…

8 ⋅ 1𝑛

8
2
⋅ 3𝑛

8
4
⋅ 9𝑛

8
2,-.L ?

⋅ 3,-.L ?𝑛

…



Master Theorem Example 4
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𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛G

Case 3
Θ 𝑛G

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant 

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



Tree method
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𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 15𝑛G

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

15𝑛G

15
𝑛
2

G
15

𝑛
2

G

15
𝑛
4

G
15

𝑛
4

G
15

𝑛
4

G

15
𝑛
4

G

15 15 15 1515 15

15𝑛G

15𝑛G

4
15𝑛G

16

15 log# 𝑛

+

+ + +

+ + + + +

log# 𝑛



Tree method
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𝑇 𝑛 = 2𝑇
𝑛
2

+ 15𝑛G

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top

15𝑛G

15𝑛G

4
15𝑛G

16

15 log# 𝑛

log# 𝑛



Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
20

?



Substitution Method

• Idea: take a “difficult” recurrence, re-express it such that one 
of our other methods applies.

• Example:

21

𝑇 𝑛 = 2𝑇 𝑛 + log# 𝑛



Tree method
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𝑛

𝑇 𝑛 = 2𝑇( 𝑛) + log# 𝑛

𝑛 𝑛

𝑛 𝑛 𝑛 𝑛

… … … …
2 2 2 … 2 2 2

log# 𝑛

1
2
log# 𝑛

1
2
log# 𝑛

1
4
log# 𝑛 1

4
log# 𝑛

1
4
log# 𝑛

1
4
log# 𝑛

1 1 1 11 1

log# 𝑛

log# 𝑛

log# 𝑛

log# 𝑛

+

+ + +

+ + + + +

log# log# 𝑛

𝑇 𝑛 = 𝑂(log# 𝑛 ⋅ log# log# 𝑛)

log# 𝑛"/# =
1
2
log# 𝑛



Substitution Method
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𝑇 𝑛 = 2𝑇 𝑛 + log# 𝑛

Let 𝑛 = 2Z, i.e. 𝑚 = log# 𝑛

Let 𝑆 𝑚 = 2𝑆 Z
#
+ 𝑚

𝑇 2Z = 2𝑇 2
Z
# + 𝑚 Rewrite in terms of exponent!

Case 2!

Let 𝑆 𝑚 = Θ(𝑚 log𝑚) Substitute Back

Let T 𝑛 = Θ(log 𝑛 log log 𝑛)

𝑇 𝑛 = 2𝑇 𝑛"/# + log# 𝑛
I don’t like the ½ in 

the exponent

Now the variable is in the 
exponent on both sides!

S will operate exactly as T, just 
redefined in terms of the 

exponent

𝑆 𝑚 = 𝑇(2Z)



Tree method
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𝑛

𝑇 𝑛 = 2𝑇( 𝑛) + log# 𝑛

𝑛 𝑛

𝑛 𝑛 𝑛 𝑛

… … … …
2 2 2 … 2 2 2

log# 𝑛

1
2
log# 𝑛

1
2
log# 𝑛

1
4
log# 𝑛 1

4
log# 𝑛

1
4
log# 𝑛 1

4
log# 𝑛

1 1 1 11 1

log# 𝑛

log# 𝑛

log# 𝑛

log# 𝑛

+

+ + +

+ + + + +

log# log# 𝑛

𝑛 = 2Z 𝑇 2Z = 2𝑇 2
Z
# + 𝑚

2Z

2Z/# 2Z/#

2Z/Q 2Z/Q 2Z/Q 2Z/Q



Tree method
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2Z

𝑇 2Z = 2𝑇(2Z/#) + 𝑚

2Z/# 2Z/#

2Z/Q 2Z/Q 2Z/Q 2Z/Q

… … … …
2" 2" 2" … 2" 2" 2"

𝑚

𝑚
2

𝑚
2

𝑚
4

𝑚
4

𝑚
4

𝑚
4

1 1 1 11 1

𝑚

𝑚

𝑚

𝑚

+

+ + +

+ + + + +

log#𝑚

𝑛 = 2Z



Tree method
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𝑚

𝑚/2 𝑚/2

𝑚/4 𝑚/4 𝑚/4 𝑚/4

… … … …
1 1 1 … 1 1 1

𝑚

𝑚
2

𝑚
2

𝑚
4

𝑚
4

𝑚
4

𝑚
4

1 1 1 11 1

𝑚

𝑚

𝑚

𝑚

+

+ + +

+ + + + +

log#𝑚

𝑇 𝑛 = 𝑂(𝑚 ⋅ log# 𝑚)

𝑛 = 2Z
𝑇 2Z = 𝑆(𝑚)

𝑆 𝑚 = 2𝑆
𝑚
2

+ 𝑚

= 𝑂(log# 𝑛 ⋅ log# log# 𝑛)



Robbie’s Yard
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There has to be an easier way!

28



Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how 
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000

29



Closest Pair of Points

30

1
2

3

4
5

6

7

8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart



Closest Pair of Points: Naïve

31

1
2

3

4
5

6

7

8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart

𝑂(𝑛#)Algorithm:
Test every pair of points, 
return the closest.

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate

Conquer: 

32



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 

33



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
Return min of Left and 
Right pairs Problem? ?

34



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans our 
“Cut”

Need to test points 
across the cut

35



Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿I

𝛿]
Compare all points 
within 𝛿 = min{𝛿I, 𝛿]}
of the cut.

2𝛿
How many are there?

36



Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿I

𝛿]

2𝛿

Compare all points 
within 𝛿 = min{𝛿I, 𝛿]}
of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2

+
𝑛
2

#
= Θ 𝑛#

37



Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿I

𝛿]

2𝛿

We don’t need to test all 
pairs!

Only need to test points 
within 𝛿 of one another

38



Reducing Search Space
Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into 
square cubbies of size c

#

Each cubby will have at most 1 
point!

39



Reducing Search Space

40

2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 15 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

Divide the “runway” into 
square cubbies of size c

#



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still 
too expensive! We need 𝑂(𝑛)



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 
𝑦-coordinate

Sorting runway points by 
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Listing Points in the Runway

1
2

3

4
5

6

7

8

44

Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿",X
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿Q,j
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Matrix Multiplication

50

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛G)

𝑛

𝑛



Matrix Multiplication D&C

51

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎G 𝑎Q
𝑎X 𝑎j 𝑎n 𝑎o
𝑎p 𝑎"q 𝑎"" 𝑎"#
𝑎"G 𝑎"Q 𝑎"X 𝑎"j

𝐵 =

𝑏" 𝑏# 𝑏G 𝑏Q
𝑏X 𝑏j 𝑏n 𝑏o
𝑏p 𝑏"q 𝑏"" 𝑏"#
𝑏"G 𝑏"Q 𝑏"X 𝑏"j

Divide:
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎G 𝑎Q
𝑎X 𝑎j 𝑎n 𝑎o
𝑎p 𝑎"q 𝑎"" 𝑎"#
𝑎"G 𝑎"Q 𝑎"X 𝑎"j

𝐴"," 𝐴",#
𝐴#," 𝐴#,#

𝐴𝐵 =
𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝐵 =

𝑏" 𝑏# 𝑏G 𝑏Q
𝑏X 𝑏j 𝑏n 𝑏o
𝑏p 𝑏"q 𝑏"" 𝑏"#
𝑏"G 𝑏"Q 𝑏"X 𝑏"j

𝐵"," 𝐵",#
𝐵#," 𝐵#,#

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2 + 4

𝑛
2

# Cost of 
additions

Combine:
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𝑇 𝑛 = 8𝑇
𝑛
2 + 4

𝑛
2

#

𝑇 𝑛 = 8𝑇
𝑛
2 + Θ(𝑛#)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛#

𝑛,-./ 0 = 𝑛,-.L o = 𝑛G
Case 1!

𝑇 𝑛 = Θ(𝑛G)
We can do better…
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎G 𝑎Q
𝑎X 𝑎j 𝑎n 𝑎o
𝑎p 𝑎"q 𝑎"" 𝑎"#
𝑎"G 𝑎"Q 𝑎"X 𝑎"j

𝐴"," 𝐴",#
𝐴#," 𝐴#,#

𝐴𝐵 =
𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝐵 =

𝑏" 𝑏# 𝑏G 𝑏Q
𝑏X 𝑏j 𝑏n 𝑏o
𝑏p 𝑏"q 𝑏"" 𝑏"#
𝑏"G 𝑏"Q 𝑏"X 𝑏"j

𝐵"," 𝐵",#
𝐵#," 𝐵#,#

Idea: Use a Karatsuba-like technique on this
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎G 𝑎Q
𝑎X 𝑎j 𝑎n 𝑎o
𝑎p 𝑎"q 𝑎"" 𝑎"#
𝑎"G 𝑎"Q 𝑎"X 𝑎"j

𝐴"," 𝐴",#
𝐴#," 𝐴#,#

𝐵 =

𝑏" 𝑏# 𝑏G 𝑏Q
𝑏X 𝑏j 𝑏n 𝑏o
𝑏p 𝑏"q 𝑏"" 𝑏"#
𝑏"G 𝑏"Q 𝑏"X 𝑏"j

𝐵"," 𝐵",#
𝐵#," 𝐵#,#

Calculate:
𝑄" = 𝐴"," + 𝐴#,# (𝐵"," + 𝐵#,#)
𝑄# = 𝐴#," + 𝐴#,# 𝐵","
𝑄G = 𝐴","(𝐵",# − 𝐵#,#)
𝑄Q = 𝐴#,#(𝐵#," − 𝐵",")

𝑄j = 𝐴#," − 𝐴"," (𝐵"," + 𝐵",#)
𝑄X = 𝐴"," + 𝐴",# 𝐵#,#

𝑄n = 𝐴",# − 𝐴#,# (𝐵#," + 𝐵#,#)

𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝑄" + 𝑄Q − 𝑄X + 𝑄n 𝑄G + 𝑄X
𝑄# + 𝑄Q 𝑄" − 𝑄# + 𝑄G + 𝑄j

Find 𝐴𝐵:

Number Mults.: 7 Number Adds.: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛#
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𝑇 𝑛 = 7𝑇
𝑛
2 +

9
2𝑛

#

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2𝑛

#

𝑛,-./ 0 = 𝑛,-.L n ≈ 𝑛#.oqn
Case 1!

𝑇 𝑛 = Θ 𝑛,-.L n ≈ Θ(𝑛#.oqn)
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𝑛G

𝑛,-.L n

Strassen’s Algorithm
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Best possible 
is unknown

May not even 
exist!


