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Warm up

Given 5 points on the unit equilateral
triangle, show there’s always a pair of

. 1
distance < Eapart
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If points p;, p, in same quadrant, then §(p,p,) <

N
[y
=

Given 5 points, two must share the same quadrant

Pigeonhole Principle! ®




Today's Keywords

* Divide and Conquer

e Closest Pair of Points



CLRS Readings

* Chapter4



Homeworks

e HW2 due Thursday 2/6 at 11pm
— Written (use Latex!) — Submit BOTH pdf and zip!
— Asymptotic notation
— Recurrences
— Master Theorem
— Divide and Conquer



Recurrence Solving Technigues

¥
5?5 Tree
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Vaster Theorem

n

T(n) =aT (b) + f(n)

Case 1: if f(n) € O(n'°8 “~¥) for some constant € > 0,
then T'(n) € ©(n'o8» )

Case 2:if f(n) € O(n'°8> %), then T(n) € O(n'°8> “logn)

Case 3:if f(n) € Q(n'8 4*€) for some constant £ > 0,
andifaf (%) < cf(n) for some constantc < 1

and all sufficiently large n,
thenT(n) € O(f(n))



3 Cases

L =logyn
2 3 7’l L
T(n)—f(n)+af +af +a b_3 +--+a f(bL)
Case 1:
Most work D D
happens at
the leaves
Case 2:
Work happens
consistently
throughout

Case 3:

Most work

happens at D D

top of tree ) 8




Historical Aside: Master Theorem

No Picture Found

Jon Bentley Dorothea Haken James Saxe



Master Theorem Example 1

T(n) = aT (%) + f(n)

*  Case 1:if f(n) = 0(n'°8> ¢ ~¥) for some constant &€ > 0, then T(n) = O(n!°8s ¢)
«  Case 2:if f(n) = O(n'°8> 2), then T(n) = O(n'°8> *logn)

*  Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

T(n) = 2T (g) +n
Case 2
O(n'°822logn) = O(nlogn)
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Tree method

T(n)=2T(g)+n
n n
n/2 ME n/2 "2
‘n//4\ 4 ‘(/4\ n/4
n/4 i n/4 M+ n/4 +| n/4
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Master Theorem example 2

n
T(n) = aT (E) + f(n)

 Case 1:if f(n) = 0(n'°8b 2 =€) for some constant € > 0, then T(n) = O(n!°8 %)
« Case 2:if f(n) = O(n!°8> 2), then T(n) = O(n'°8> *logn)

*  Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

T(n) = 4T (g) +5n

Case l
O(n'o8z4) = 0(n?)

12



Tree method
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Tree method

n

T(n) = 4T (2

)+5n

Cost is increasing with the recursion depth
(due to large number of subproblems)

Most of the work happening in the leaves

5n

4

—.5n

2
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Master Theorem example 3

n
T(n) = aT (E) + f(n)

 Case 1:if f(n) = 0(n'°8b 2 =€) for some constant € > 0, then T(n) = O(n!°8 %)
« Case 2:if f(n) = O(n!°8> 2), then T(n) = O(n'°8> *logn)

*  Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

T(n) = 3T(g) + 8n

Case 1l
@(nlogz 3) ~ @(711'5)

15
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Master Theorem =xample 4

n
T(n) = aT (E) + f(n)

 Case 1:if f(n) = 0(n'°8b 2 =€) for some constant € > 0, then T(n) = O(n!°8 %)
« Case 2:if f(n) = O(n!°8> 2), then T(n) = O(n'°8> *logn)

*  Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n
T(n) = 2T (E) + 1513
Case 3
O(n3)

17



Tree method

T(n) = 2T (72_1) +15n3
n 15n3
4/713\ N3
n/2 |15(;) + n/2 153
TN s LK(Q\ 15
n/4 | ¥ln/4 “+rin/4 | Y| n/4
1 19 v Pl 1R 14

E) 15n3

15n3

15n3

16

> log, n

1515logzry

D[_]UU
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Tree method

n

T(n) = 2T (2

)4—15n3

1513 Y
Cost is decreasing with the recursion depth

(due to high non-recursive cost) 1573

Most of the work happening at the to
PRening P 1503 [ logyn

16
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Recurrence Solving Technigues

¥
5?5 Tree

? ‘/Guess/Check

o IR0 ”
i . “Cookbook

Substitution

20




Substitution Method

* |dea: take a “difficult” recurrence, re-express it such that one
of our other methods applies.

* Example:

T(n) = 2T(y/n) +log, n

21



Tree method

log, n'/? = Elogz n

T(n) = 2T (y/n) + log, n

log, n 10g2 )
n
1/\ .
\/T_l Elogzn + \/ﬁ Elogzn log, n

/\ 1 /\ 1 log, log, n
\ﬁ% 410 2 n \[\/7H Z]og2$ \/\/ﬁ Zlog_FFn \/\/_H Zlngn 10g2n > 2 2

1

log, n

T(n) = 0(log, n - log, log, n)

22



Substitution Method

T(n) = 2T (y/n) + log, n
| don’t like the % in
— ZT(nl/Z) + lng n the exponent

exponent on both sides!

Letn = Zm’ l.e.m = ]0g2 n%[ Now the variable is in the }

m
T(2™) = 2T (27) + m Rewrite in terms of exponent!

Let S(m) =25 (‘n_’t) +m Case 2! S will operate exactly as T, just
2 ' redefined in terms of the
Let S(m) = O(mlogm) Substitute Back exponent
S(m) =T(2™)

Let T(n) = O(lognloglogn) 23



Tree method

m
n=2m T(2™) = 2T (22) +m
log, n 10g2 Y
2m
1/\ .
om/2 Elog2 n 4 2m/2 Elogz n 10g2 n
1 1
TN logn e 1 g i0gyn
2m/4 + zm/4 -+ 2m/4 -+ 2771/4- 4 lOgZ n
1+ 1 1 1 1 1

log, n

2 |+ 2 et 2+ 2 |+ 2
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Tree method

n=2" T(2™) = 2T (2™/%) + m
m m )
m
om/z |3 2m/2 |5 m
‘m/\ - ‘4\ . >log2m
om/4 [+ |om/4 |y +|opm/4 |y + | om/4 |7y m

25



Tree method

n=2" S(m) =25 (%) +m
T(2™) = S(m) 2
m m
m
m/2 |2 + m/2 |2 m
4m/\ m 44\ m
m/4 |+t m/4 |4 T m/bd |+ T im/4 4 T
1
R O A T Y S T e A T T A

T(n) = 0(m-log, m)= 0(log, n -log, log, n)

26
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There has to be an easier way!




Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how
wide can the robot be?

29



Closest Pair of Points

®

Given:
A list of points

Return:

Pair of points with
smallest distance apart

30

©




Closest Pair of Points: Nalve

Given: @ --------------------------- 20,

A list of points

Return: @ @
Pair of points with @

smallest distance apart

Algorithm: 0(n?%)

Test every pair of points, @
return the closest. @ \
We can do better!

31 O(nlogn)




Closest Pair of Points: D&C

Divide: How? @
. . @®
At median x coordinate

Conquer: @

32




Closest Pair of Points: D&C

Divide: @
At median x coordinate

Conquer: ©

o @
Recursively find closest (®

pairs from Left and Right

Combine:

®

33 LeftPoints

RightPoints




Closest Pair of Points: D&C

Divide:
At median x coordinate

Conquer:

Recursively find closest
pairs from Left and Right

Combine:
Return min of Left and
Right pairs  Problem?

34

LeftPoints

RightPoints




Closest Pair of Points: D&C

Combine:

2 Cases: ©) @

1. Closest Pair is
completely in Left or ®

i @

2. Closest Pair Spans our
llcut”

Need to test points
®
across the cut

35 LeftPoints RightPoints




2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

Compare all points
within § = min{d;, 6}
of the cut.

How many are there?

36

Spanning the Cut

Combine:

©

®

LeftPoints

RightPoints




Spanning the Cut

Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

Compare all points
within 6 = min{é;, 6r}
of the cut.

How many are there?

2

T(n) = 2T (%) + (’21) — 0(n?)
37

LeftPoints

RightPoints




Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

We don’t need to test all
pairs!

Only need to test points
within 6 of one another

38

Spanning the Cut

LeftPoints

RightPoints




Combine

Reducing Search Space

2. Closest Pair Spanned our

IICutH

Need to test points across the

cut

Divide the “runway” into

. )
square cubbies of size >

Each cubby will have at most 1

point!

39
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Reducing Search Space

Combine:

2. Closest Pair Spanned our
IICutH

Need to test points across the
cut

Divide the “runway” into

. )
square cubbies of size >

How many cubbies could
contain a point < 6 away?

Each point compared to
< 15 other points

_________________________________

________________________________

40



Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair @
of points in each list @
Base case?

Combine:

e Construct list of points in the runway
(x-coordinate within distance § of median)

* Sort runway points by y-coordinate

e Compare each point in runway to 15 points @
above it and save the closest pair

* Output closest pair among left, right, and
runway points LeftPoints RightPoints




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

-~

But sorting is an O(nlogn)
algorithm — combine step is still
too expensive! We need 0(n)

o
* Construct list of points i ay
(x-coordinate within dista of median)

* Sort runway points by y-coordinate
e Compare each point in runway to 15 points
above it and save the closest pair

* Output closest pair among left, right, and
runway points LeftPoints RightPoints




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:

Construct list of points in the runway

(x-coordinate within distance § of median)

Sort runway points by y-coordinate = =—)
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

e List of points sorted according to
y-coordinate

Sorting runway points by
y-coordinate now becomes a merge



Listing Points In the Runway

Output on Left: © 0
Closest Pair: (1,5), 61 5

Sorted Points: [3,7,5,1]
Output on Right: @

Closest Pair: (4,6), 846 (6

Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

by a single pass over the lists LeftPoints RightPoints

®
Both of these lists can be computed (®)




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points Divide: Partition points into two lists of points
based on x-coordinate (split at the median x) based on x-coordinate (split at the median x)
Conquer: Recursively compute the closest pair Conquer: Recursively compute the closest pair
of points in each list of points in each list
Base case? ‘
Combine: Combine:
e Construct list of points in the runway * Merge sorted list of points by y-coordinate
(x-coordinate within distance § of median) and construct list of points in the runway
* Sort runway points by y-coordinate (sorted by y-coordinate)
e Compare each point in runway to 15 points e Compare each point in runway to 15 points
above it and save the closest pair above it and save the closest pair
* Qutput closest pair among left, right, and e OQutput closest pair among left, right, and

runway points runway points



Closest Pair of Points: Divide and Conguer

What is the running time?

O(nlogn)

T(n) <

T(n) =2T(n/2) + O(n)

Case 2 of Master’s Theorem
T(n) =0O(nlogn)

@(n log n) Initialization: Sort points by x-coordinate

0(1)

2T(n/2)

O(n)

O(n)

o)

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

* Compare each point in runway to 15 points
above it and save the closest pair

e OQutput closest pair among left, right, and
runway points



Matrix Multiplication

n
1 2 31 [2] (4] |6
ni4 5 6|X|8| 10| [12
7 8 91 114| 16| (13
2+16+42 4+20+48 6+ 24+ 541
(60 72 84
= 1132 162 192
204 252 300

Run time? 0(n®)

50



Matrix Multiplication D&C

Multiply nXn matrices (A and B)
Divide:

51



Matrix Multiplication D&C

Multiply nXn matrices (A and B)

.

J

Al,l
A= 2
A2,1 )
Combine:
A{{Bi1+ A44-B
AB :[ 1,1D01,1 1,2D2,1

Ay11B1,+A1,B55

Ay 1B11+A2By1 Ay1Bi, +A32B5,

Cost of

Runtime? T(n) = 8T(

additions




Matrix Multiplication D&C

T(n) = 8T (5) + 4 (72—1)2
T(n) = 8T (g) + O(n?)

a=8b=2f(n) =n?
Case 1!
nlogpa — plogz 8 — 4,3

T(n) = 0(n)
We can do better...



Matrix Multiplication D&C

Multiply nXn matrices (A and B)

J
)
J

Ay1B11+A1,B,1 A11B1,+ 41,855

AB =
Ay1B11+A2B,1 Az1Bi,+ A,B55

|Idea: Use a Karatsuba-like technique on this

54



Strassen’s Algorithm
Multiply nXn matrices (A and B)

Al'l ) A1,2 ) Bl;1 Bl’z
A - N\ ™ B = 1 > <
Az'l J \ AZ'Z J Bz’l J B2'2 J
Calculate: Find AB:
Q1 = (A1,1 +A2,2)(B1,1 + B37) [Ql + Q4 — Qs + Q7 Q3 + Qs ]
Q; = (A1 + A22)B11 Q2 + Q4 Q1 — Q2+ Q3+ Q¢
Q3 = A11(B12 — B232)
Q4= Ay »(Byy — By 1) Ay1B11 +A12By1 A11Big + A1,sz,2]
Qs = (A1 + A12)Bs Ay1B1q +Az2By1 Ay1Bi,+ Az0B;5
Q6 = (A2,1 — A1,1)(B1,1 + B12) Number Mults.: 7 Number Adds.: 18
Q7 = (A1,2 — Az,z)(Bz,1 + B32) _ n 9 2
() =77 (3) + 5n .




Strassen’s Algorithm

T(n) =77 (5) + 2

27 2

9
a=7b=2f(n) =§n2

nlogb a — nlogz 7 ~ n2807

Case 1!

T(Tl) — @(nlogz 7) ~ @(n2.807)

56



Strassen’s Algorithm

;
//

i // i
i raes e




s this the fastest?

3.0

naive
29 - Best possible
is unknown
Strassen
2.8 ‘
- Bini et al.
May not even
2.7 ¢ .
— exist!
2.6
| Schonhage § ¢ omani
251 Coppersmith, Winograd Sirassen
2.4 i Coppersmith, Winograd Stothers
Williams
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