CS4102 Algorithms

Spring 2020

Warm up

Given 5 points on the unit equilateral
triangle, show there’s always a pair of

. 1
distance < Eapart

CS4102 Algorithms

Spring 2020

If points p;, p, in same quadrant, then §(p,p,) <

N
[y
=

Given 5 points, two must share the same quadrant

Pigeonhole Principle! ®

Today's Keywords

* Divide and Conquer

e Closest Pair of Points

CLRS Readings

* Chapter4

Homeworks

e HW2 due Thursday 2/6 at 11pm
— Written (use Latex!) — Submit BOTH pdf and zip!
— Asymptotic notation
— Recurrences
— Master Theorem
— Divide and Conquer

Recurrence Solving Technigues

¥
5?5 Tree

? \/Guess/Check

N e I ”
s, : Cookbook

@4 Substitution

Vaster Theorem

n

T(n) =aT (b) + f(n)

Case 1: if f(n) € O(n'°8 “~¥) for some constant € > 0,
then T'(n) € ©(n'o8»)

Case 2:if f(n) € O(n'°8> %), then T(n) € O(n'°8> “logn)

Case 3:if f(n) € Q(n'8 4*€) for some constant £ > 0,
andifaf (%) < cf(n) for some constantc < 1

and all sufficiently large n,
thenT(n) € O(f(n))

3 Cases

L =logyn
2 3 7’l L
T(n)—f(n)+af +af +a b_3 +--+a f(bL)
Case 1:
Most work D D
happens at
the leaves
Case 2:
Work happens
consistently
throughout

Case 3:

Most work

happens at D D

top of tree) 8

Historical Aside: Master Theorem

No Picture Found

Jon Bentley Dorothea Haken James Saxe

Master Theorem Example 1

T(n) = aT (%) + f(n)

* Case 1:if f(n) = 0(n'°8> ¢ ~¥) for some constant &€ > 0, then T(n) = O(n!°8s ¢)
« Case 2:if f(n) = O(n'°8> 2), then T(n) = O(n'°8> *logn)

* Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

T(n) = 2T (g) +n
Case 2
O(n'°822logn) = O(nlogn)

10

Tree method

T(n)=2T(g)+n
n n
n/2 ME n/2 "2
‘n//4\ 4 ‘(/4\ n/4
n/4 i n/4 M+ n/4 +| n/4

11

Master Theorem example 2

n
T(n) = aT (E) + f(n)

 Case 1:if f(n) = 0(n'°8b 2 =€) for some constant € > 0, then T(n) = O(n!°8 %)
« Case 2:if f(n) = O(n!°8> 2), then T(n) = O(n'°8> *logn)

* Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

T(n) = 4T (g) +5n

Case l
O(n'o8z4) = 0(n?)

12

Tree method

Al APl Af A e TR Al 2 e D

Tree method

n

T(n) = 4T (2

)+5n

Cost is increasing with the recursion depth
(due to large number of subproblems)

Most of the work happening in the leaves

5n

4

—.5n

2

16

.5

4
2logzn . 5y

oo s

Master Theorem example 3

n
T(n) = aT (E) + f(n)

 Case 1:if f(n) = 0(n'°8b 2 =€) for some constant € > 0, then T(n) = O(n!°8 %)
« Case 2:if f(n) = O(n!°8> 2), then T(n) = O(n'°8> *logn)

* Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

T(n) = 3T(g) + 8n

Case 1l
@(nlogz 3) ~ @(711'5)

15

“LER

S A
8 8 88 vee 8 8888 8 Zlogz — 3log2 ny

Master Theorem =xample 4

n
T(n) = aT (E) + f(n)

 Case 1:if f(n) = 0(n'°8b 2 =€) for some constant € > 0, then T(n) = O(n!°8 %)
« Case 2:if f(n) = O(n!°8> 2), then T(n) = O(n'°8> *logn)

* Case 3:if f(n) = Q(n'°8 ¢+€) for some constant &€ > 0, and if af (;l) < cf(n) for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

n
T(n) = 2T (E) + 1513
Case 3
O(n3)

17

Tree method

T(n) = 2T (72_1) +15n3
n 15n3
4/713\ N3
n/2 |15(;) + n/2 153
TN s LK(Q\ 15
n/4 | ¥ln/4 “+rin/4 | Y| n/4
1 19 v Pl 1R 14

E) 15n3

15n3

15n3

16

> log, n

1515logzry

D[_]UU

18

Tree method

n

T(n) = 2T (2

)4—15n3

1513 Y
Cost is decreasing with the recursion depth

(due to high non-recursive cost) 1573

Most of the work happening at the to
PRening P 1503 [logyn

16

DUUU

15log, n)

Recurrence Solving Technigues

¥
5?5 Tree

? ‘/Guess/Check

o IR0 ”
i . “Cookbook

Substitution

20

Substitution Method

* |dea: take a “difficult” recurrence, re-express it such that one
of our other methods applies.

* Example:

T(n) = 2T(y/n) +log, n

21

Tree method

log, n'/? = Elogz n

T(n) = 2T (y/n) + log, n

log, n 10g2)
n
1/\ .
\/T_l Elogzn + \/ﬁ Elogzn log, n

/\ 1 /\ 1 log, log, n
\ﬁ% 410 2 n \[\/7H Z]og2$ \/\/ﬁ Zlog_FFn \/\/_H Zlngn 10g2n > 2 2

1

log, n

T(n) = 0(log, n - log, log, n)

22

Substitution Method

T(n) = 2T (y/n) + log, n
| don’t like the % in
— ZT(nl/Z) + lng n the exponent

exponent on both sides!

Letn = Zm’ l.e.m =]0g2 n%[Now the variable is in the }

m
T(2™) = 2T (27) + m Rewrite in terms of exponent!

Let S(m) =25 (‘n_’t) +m Case 2! S will operate exactly as T, just
2 ' redefined in terms of the
Let S(m) = O(mlogm) Substitute Back exponent
S(m) =T(2™)

Let T(n) = O(lognloglogn) 23

Tree method

m
n=2m T(2™) = 2T (22) +m
log, n 10g2 Y
2m
1/\ .
om/2 Elog2 n 4 2m/2 Elogz n 10g2 n
1 1
TN logn e 1 g i0gyn
2m/4 + zm/4 -+ 2m/4 -+ 2771/4- 4 lOgZ n
1+ 1 1 1 1 1

log, n

2 |+ 2 et 2+ 2 |+ 2

24

Tree method

n=2" T(2™) = 2T (2™/%) + m
m m)
m
om/z |3 2m/2 |5 m
‘m/\ - ‘4\ . >log2m
om/4 [+ |om/4 |y +|opm/4 |y + | om/4 |7y m

25

Tree method

n=2" S(m) =25 (%) +m
T(2™) = S(m) 2
m m
m
m/2 |2 + m/2 |2 m
4m/\ m 44\ m
m/4 |+t m/4 |4 T m/bd |+ T im/4 4 T
1
R O A T Y S T e A T T A

T(n) = 0(m-log, m)= 0(log, n -log, log, n)

26

o

S
VI
19D,
D
@
@

®
o

There has to be an easier way!

Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how
wide can the robot be?

29

Closest Pair of Points

®

Given:
A list of points

Return:

Pair of points with
smallest distance apart

30

©

Closest Pair of Points: Nalve

Given: @ --------------------------- 20,

A list of points

Return: @ @
Pair of points with @

smallest distance apart

Algorithm: 0(n?%)

Test every pair of points, @
return the closest. @ \
We can do better!

31 O(nlogn)

Closest Pair of Points: D&C

Divide: How? @
. . @®
At median x coordinate

Conquer: @

32

Closest Pair of Points: D&C

Divide: @
At median x coordinate

Conquer: ©

o @
Recursively find closest (®

pairs from Left and Right

Combine:

®

33 LeftPoints

RightPoints

Closest Pair of Points: D&C

Divide:
At median x coordinate

Conquer:

Recursively find closest
pairs from Left and Right

Combine:
Return min of Left and
Right pairs Problem?

34

LeftPoints

RightPoints

Closest Pair of Points: D&C

Combine:

2 Cases: ©) @

1. Closest Pair is
completely in Left or ®

i @

2. Closest Pair Spans our
llcut”

Need to test points
®
across the cut

35 LeftPoints RightPoints

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

Compare all points
within § = min{d;, 6}
of the cut.

How many are there?

36

Spanning the Cut

Combine:

©

®

LeftPoints

RightPoints

Spanning the Cut

Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

Compare all points
within 6 = min{é;, 6r}
of the cut.

How many are there?

2

T(n) = 2T (%) + (’21) — 0(n?)
37

LeftPoints

RightPoints

Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

We don’t need to test all
pairs!

Only need to test points
within 6 of one another

38

Spanning the Cut

LeftPoints

RightPoints

Combine

Reducing Search Space

2. Closest Pair Spanned our

IICutH

Need to test points across the

cut

Divide the “runway” into

.)
square cubbies of size >

Each cubby will have at most 1

point!

39

Reducing Search Space

Combine:

2. Closest Pair Spanned our
IICutH

Need to test points across the
cut

Divide the “runway” into

.)
square cubbies of size >

How many cubbies could
contain a point < 6 away?

Each point compared to
< 15 other points

40

Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair @
of points in each list @
Base case?

Combine:

e Construct list of points in the runway
(x-coordinate within distance § of median)

* Sort runway points by y-coordinate

e Compare each point in runway to 15 points @
above it and save the closest pair

* Output closest pair among left, right, and
runway points LeftPoints RightPoints

Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

-~

But sorting is an O(nlogn)
algorithm — combine step is still
too expensive! We need 0(n)

o
* Construct list of points i ay
(x-coordinate within dista of median)

* Sort runway points by y-coordinate
e Compare each point in runway to 15 points
above it and save the closest pair

* Output closest pair among left, right, and
runway points LeftPoints RightPoints

Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:

Construct list of points in the runway

(x-coordinate within distance § of median)

Sort runway points by y-coordinate = =—)
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

e List of points sorted according to
y-coordinate

Sorting runway points by
y-coordinate now becomes a merge

Listing Points In the Runway

Output on Left: © 0
Closest Pair: (1,5), 61 5

Sorted Points: [3,7,5,1]
Output on Right: @

Closest Pair: (4,6), 846 (6

Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

by a single pass over the lists LeftPoints RightPoints

®
Both of these lists can be computed (®)

Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points Divide: Partition points into two lists of points
based on x-coordinate (split at the median x) based on x-coordinate (split at the median x)
Conquer: Recursively compute the closest pair Conquer: Recursively compute the closest pair
of points in each list of points in each list
Base case? ‘
Combine: Combine:
e Construct list of points in the runway * Merge sorted list of points by y-coordinate
(x-coordinate within distance § of median) and construct list of points in the runway
* Sort runway points by y-coordinate (sorted by y-coordinate)
e Compare each point in runway to 15 points e Compare each point in runway to 15 points
above it and save the closest pair above it and save the closest pair
* Qutput closest pair among left, right, and e OQutput closest pair among left, right, and

runway points runway points

Closest Pair of Points: Divide and Conguer

What is the running time?

O(nlogn)

T(n) <

T(n) =2T(n/2) + O(n)

Case 2 of Master’s Theorem
T(n) =0O(nlogn)

@(n log n) Initialization: Sort points by x-coordinate

0(1)

2T(n/2)

O(n)

O(n)

o)

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

* Compare each point in runway to 15 points
above it and save the closest pair

e OQutput closest pair among left, right, and
runway points

Matrix Multiplication

n
1 2 31 [2] (4] |6
ni4 5 6|X|8| 10| [12
7 8 91 114| 16| (13
2+16+42 4+20+48 6+ 24+ 541
(60 72 84
= 1132 162 192
204 252 300

Run time? 0(n®)

50

Matrix Multiplication D&C

Multiply nXn matrices (A and B)
Divide:

51

Matrix Multiplication D&C

Multiply nXn matrices (A and B)

.

J

Al,l
A= 2
A2,1)
Combine:
A{{Bi1+ A44-B
AB :[1,1D01,1 1,2D2,1

Ay11B1,+A1,B55

Ay 1B11+A2By1 Ay1Bi, +A32B5,

Cost of

Runtime? T(n) = 8T(

additions

Matrix Multiplication D&C

T(n) = 8T (5) + 4 (72—1)2
T(n) = 8T (g) + O(n?)

a=8b=2f(n) =n?
Case 1!
nlogpa — plogz 8 — 4,3

T(n) = 0(n)
We can do better...

Matrix Multiplication D&C

Multiply nXn matrices (A and B)

J
)
J

Ay1B11+A1,B,1 A11B1,+ 41,855

AB =
Ay1B11+A2B,1 Az1Bi,+ A,B55

|Idea: Use a Karatsuba-like technique on this

54

Strassen’s Algorithm
Multiply nXn matrices (A and B)

Al'l) A1,2) Bl;1 Bl’z
A - N\ ™ B = 1 > <
Az'l J \ AZ'Z J Bz’l J B2'2 J
Calculate: Find AB:
Q1 = (A1,1 +A2,2)(B1,1 + B37) [Ql + Q4 — Qs + Q7 Q3 + Qs]
Q; = (A1 + A22)B11 Q2 + Q4 Q1 — Q2+ Q3+ Q¢
Q3 = A11(B12 — B232)
Q4= Ay »(Byy — By 1) Ay1B11 +A12By1 A11Big + A1,sz,2]
Qs = (A1 + A12)Bs Ay1B1q +Az2By1 Ay1Bi,+ Az0B;5
Q6 = (A2,1 — A1,1)(B1,1 + B12) Number Mults.: 7 Number Adds.: 18
Q7 = (A1,2 — Az,z)(Bz,1 + B32) _ n 9 2
() =77 (3) + 5n .

Strassen’s Algorithm

T(n) =77 (5) + 2

27 2

9
a=7b=2f(n) =§n2

nlogb a — nlogz 7 ~ n2807

Case 1!

T(Tl) — @(nlogz 7) ~ @(n2.807)

56

Strassen’s Algorithm

;
//

i // i
i raes e

s this the fastest?

3.0

naive
29 - Best possible
is unknown
Strassen
2.8 ‘
- Bini et al.
May not even
2.7 ¢ .
— exist!
2.6
| Schonhage § ¢ omani
251 Coppersmith, Winograd Sirassen
2.4 i Coppersmith, Winograd Stothers
Williams
T R S R | T O TR B T | T R S B T R S R | I Year 58

1950 1960 1970 1980 1990 2000 2010

