Spring 2020 - Horton's Slides

We didn't finish the slides "L14" titled: Dynamic Programming, Part Deux

- These are updated slides on the LCS problem


## Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Bottom-up vs. Top-down solutions


## CLRS Readings

- Chapter 15
-Section 15.4, longest common subsequence


## Reminders: Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest


## Longest Common Subsequence

Given two sequences $X$ and $Y$, find the length of their longest common subsequence

## Example:

$X=$ ATCTGAT
$Y=$ TGCATA
LCS = TCTA
$X=A T \quad$ C TGAT
$Y=$ TGCAT $A$

Brute force: Compare every subsequence of $X$ with $Y: \Omega\left(2^{n}\right)$


## Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest


## 1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first $i$ characters of $X$, first $j$ character of $Y$ Find $\operatorname{LCS}(i, j)$ :

$$
\begin{array}{ll}
\text { Case } 1: X[i]=Y[j] \quad & X=\text { ATCTGCGT } \\
& Y=\operatorname{TGCATAT} \\
& \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j-1)+1
\end{array}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{ll}
X=A T C T G C G A & X=A T C T G C G A \\
Y=T G C A T A C & Y=T G C A T A C \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

## Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest


## 1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first $i$ characters of $X$, first $j$ character of $Y$ Find $\operatorname{LCS}(i, j)$ :

$$
\begin{array}{ll}
\text { Case 1: } X[i]=Y[j] \quad & X=\operatorname{ATCTGCGT} \\
& Y=\operatorname{TGCATAT} \\
& \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j-1)+1
\end{array}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{ll}
X=A T C T G C G A & X=A T C T G C G A \\
Y=T G C A T A C & Y=T G C A T A C \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\underset{\uparrow}{\operatorname{LCS}(i, j)}= \begin{cases}0 & \begin{array}{l}
\text { Read from } M[i, j] \\
\text { if } \\
\text { Saresent } i=0 \text { or } j=0 \\
\operatorname{LCS}(i-1, j-1) \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) \\
\text { Sif } X[i]=Y[j]
\end{array} \\
\text { otherwise }\end{cases}
$$

## Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Avoid extra work due to overlapping subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest


## 3. Solve in a Good Order

$$
\begin{aligned}
& \operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j]\end{cases} \\
& \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) \quad \text { otherwise }
\end{aligned}
$$

To fill in cell $(i, j)$ we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

## LCS Length Algorithm

LCS-Length(X, Y) // Y for M's rows, X for its columns

1. $\mathrm{n}=$ length $(\mathrm{X}) / /$ get the $\#$ of symbols in X
2. $\mathrm{m}=$ length $(\mathrm{Y}) / /$ get the \# of symbols in Y
3. for $\mathrm{i}=1$ to $\mathrm{m} \quad \mathrm{M}[\mathrm{i}, 0]=0 / /$ special case: $\mathrm{Y}_{0}$
4. for $\mathrm{j}=1$ to $\mathrm{n} \quad \mathrm{M}[0, \mathrm{j}]=0 / /$ special case: $\mathrm{X}_{0}$
5. for $\mathrm{i}=1$ to $\mathrm{m} \quad / /$ for all $Y_{i}$
6. for $\mathrm{j}=1$ to $\mathrm{n} \quad / /$ for all $\mathrm{X}_{\mathrm{j}}$
7. $\quad$ if $(X[i]==Y[j])$
8. 

$\mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}-1, \mathrm{j}-1]+1$
9. else $M[i, j]=\max (M[i-1, j], M[i, j-1])$
10. return $\mathrm{M}[\mathrm{m}, \mathrm{n}] / /$ return LCS length for Y and X

## Run Time?

$$
\begin{aligned}
& \operatorname{LCS}(i, j)=\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j]\end{cases} \\
& \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) \quad \text { otherwise }
\end{aligned}
$$

Run Time: $\Theta(n \cdot m)$ (for $|X|=n,|Y|=m)$

## Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$



Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

## Reconstructing the LCS

$$
\begin{aligned}
& \operatorname{CCS}(i, j)=\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j]\end{cases} \\
& \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) \quad \text { otherwise }
\end{aligned}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

## Reconstructing the LCS

$$
\begin{aligned}
& \operatorname{CCS}(i, j)=\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j]\end{cases} \\
& \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) \quad \text { otherwise }
\end{aligned}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

## Top-Down Solution with Memoization

We need two functions; one will be recursive.

LCS-Length( $\mathrm{X}, \mathrm{Y}$ ) // Y is M's cols.

1. $n=$ length $(X)$
2. $\mathrm{m}=$ length $(\mathrm{Y})$
3. Create table $M[m, n]$
4. Assign -1 to all cells $M[i, j]$
// get value for entire sequences
5. return LCS-recur(X, Y, M, m, n)

## LCS-recur(X, Y, M, i, j)

1. if $(i==0| | j==0)$ return 0
// have we already calculated this subproblem?
2. if $(M[i, j]$ ! $=-1$ ) return $M[i, j]$
3. if $(X[i]==Y[j])$
4. $M[i, j]=\operatorname{LCS}-\operatorname{recur}(X, Y, M, i-1, j-1)+1$
5. else
6. $M[i, j]=\max (\operatorname{LCS}-\operatorname{recur}(X, Y, M, i-1, j)$, LCS-recur (X, Y, M, i, j-1) )
7. return $M[i, j]$

## Another LCS Example

Let's see how LCS algorithm works on the following example:

- $\mathrm{X}=\mathrm{ABCB}$
- $\mathrm{Y}=\mathrm{BDCAB}$

What is the Longest Common Subsequence of X and Y ?
$\operatorname{LCS}(\mathrm{X}, \mathrm{Y})=\mathrm{BCB}$
$\mathrm{X}=\mathrm{AB} \quad \mathbf{C} \quad \mathbf{B}$
$Y=\mathbf{B D C A B}$

LCS Example (0)

$\mathrm{X}=\mathrm{ABCB} ; \mathrm{m}=|\mathrm{X}|=4$
$\mathrm{Y}=\mathrm{BDCAB} ; \mathrm{n}=|\mathrm{Y}|=5$
Allocate array M[5,4]
Note: In this example, $\mathbf{X}$ is M 's rows, $Y$ is the columns.
Opposite from earlier example.

## LCS Example (1)



$$
\begin{array}{ll}
\text { for } i=1 \text { to } m & \\
\text { for } j=1 \text { to } n & \\
M[0,0]=0 & =0
\end{array}
$$

## LCS Example (2)



$$
\begin{aligned}
& \text { if }(X[i]==Y[j]) \\
& M[i, j]=M[i-1, j-1]+1 \\
& \text { else } M[i, j]=\max (M[i-1, j], M[i, j-1])
\end{aligned}
$$








## LCS Example (10)



$$
\begin{aligned}
& \text { if }(\mathrm{X}[\mathrm{i}]==\mathrm{Y}[\mathrm{j}]) \\
& \mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{M}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{M}[\mathrm{i}-1, \mathrm{j}], \mathrm{M}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$



## LCS Example (12)

ABCB


$$
\begin{aligned}
& \text { if }(\mathrm{X}[\mathrm{i}]==\mathrm{Y}[\mathrm{j}]) \\
& \mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } M[i, j]=\max (\mathrm{M}[\mathrm{i}-1, \mathrm{j}], \mathrm{M}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

LCS Example (13)


$$
\begin{aligned}
& \text { if }(\mathrm{X}[\mathrm{i}]==\mathrm{Y}[\mathrm{j}]) \\
& \mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{M}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{M}[\mathrm{i}-1, \mathrm{j}], \mathrm{M}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$




## Practice!

- $X=[G, D, V, E, G, T, A]$ and $Y=[G, V, C, E, K, S, T]$
- Find the LCS, show the table M
- Can you reconstruct the LCS from M?

