CS4102 Algorithms

Spring 2020 - slides for both Hott and Horton's sections
It's time to "change" things up and start our unit on Greedy Algorithms! $)$

Where We're Going

- Terminology about optimization problems and greedy algorithms (this video)
- Example 1: Coin Changing (this video)
- Contrast with dynamic programming approach
- Proofs of correctness
- Example 2: Interval Scheduling (next video)
- ...
- Textbook readings: CLRS Chapter 16 (go for it!)

Coin Changing

Imagine a world without computerized cash registers!

The problem: Given an unlimited quantities of pennies, nickels, dimes, and quarters (worth value $1,5,10,25$ respectively), determine a set of coins (the change) for a given value x using the fewest number of coins.

How Would You Solve This?

- Would this be your algorithm?
- Generate each possible set of coins that sum to x.
- Determine which of these sets has the fewest coins.
- No, this is probably not at all what you thought of doing!
- It's correct. But it's a brute force approach.
- What would you do?
- Take a moment and try to describe your approach as an algorithm.

Change Making Algorithm

- Given: target value x, list of coins $C=\left[c_{1}, \ldots, c_{k}\right]$ (in this case $C=[1,5,10,25]$)
- Repeatedly select the largest coin less than the remaining target value:

$$
\begin{aligned}
& \text { while }(x>0) \\
& \quad \text { let } c=\max \left(c_{i} \in\left\{c_{1}, \ldots, c_{k}\right\} \mid c_{i} \leq x\right) \\
& \quad \text { print } c \\
& \quad x=x-c
\end{aligned}
$$

Let's reflect on this

- What's its time-complexity?
- Looks like it's $O(x)$ in the worst-case. (Why do I say that?)
- Maybe it's $O(k x)$ if I really have to do a max() operation at each step
- We'll come back to this.
- Does this always work? I.e. how can we prove it to be correct?
- Intuitively you know it's true for US coins, right?

Some Terminology Before We Continue...

- Optimization problems: terminology
- A solution must meet certain constraints:

A solution is feasible
Example: All edges in solution are in graph, form a simple path.

- Solutions judged on some criteria:

Objective function
Example: Sum of edge weights in path is smallest

- One (or more) feasible solutions that scores highest (by the objective function) is called the optimal solution(s)
- Both dynamic programming and the greedy approach are often good choices for optimization problems.

Greedy Strategy: An Overview

- Greedy strategy:
- Build solution by stages, adding one item to the partial solution we've found before this stage
- At each stage, make locally optimal choice based on the greedy choice (sometimes called the greedy rule or the selection function)
- Locally optimal, i.e. best given what info we have now
- Irrevocable: a choice can't be un-done
- Sequence of locally optimal choices leads to globally optimal solution (hopefully)
- Must prove this for a given problem!
- Sometimes basis for approximation algorithms or heuristic algorithms used to get something close to optimal solution.

Back to Coin Changing: Correctness?

- Can you think of how you might argue this strategy (algorithm) always choose the optimal solution for coin-changing?
- Maybe argue along these lines:
- If an algorithm did something different than what our algorithm does, then it won't choose optimal solution.
- We'll see proof later in slides.

Warm Up, take 2

Given access to unlimited quantities of pennies, nickels, dimes, toms, and quarters (worth value $1,5,10,11,25$ respectively), give 90 cents change using the fewest number of coins.

Greedy method's solution

90 cents

Greedy solution not optimal!

Warm Up, take 2

Given access to unlimited quantities of pennies, nickels, dimes, toms, and quarters (worth value $1,5,10,11,25$ respectively), give 90 cents change using the fewest number of coins.

We can solve coin changing with dynamic programming, too.

Will that work for this set of coins?

Dynamic Programming

- Requires Optimal Substructure
- Optimal solution to a problem contains optimal solutions to subproblems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Change (x) : minimum number of coins needed to give change for x cents

Possibilities for last coin

Of course we need to define a data structure to remember partial results and fill it in some order.
We won't address that here.

Coins needed

Change $(x-25)+1$	if $x \geq 25$
Change $(x-11)+1$	if $x \geq 11$
Change $(x-10)+1$	if $x \geq 10$
Change $(x-5)+1$	if $x \geq 5$
Change $(x-1)+1$	if $x \geq 1$

Change $(x-5)+1 \quad$ if $x \geq 5$

Change $(x-1)+1 \quad$ if $x \geq 1$
15

Identify Recursive Structure

Change (x) : minimum number of coins needed to give change for x cents
Change $(x)=\min \begin{cases}\text { Change }(x-25)+1 & \text { if } x \geq 25 \\ \text { Change }(x-11)+1 & \text { if } x \geq 11 \\ \text { Change }(x-10)+1 & \text { if } x \geq 10 \\ \text { Change }(x-5)+1 & \text { if } x \geq 5 \\ \text { Change }(x-1)+1 & \text { if } x \geq 1\end{cases}$

> Correctness: The optimal solution must be contained in one of these configurations

Size of input x is how many bits to store x.

Base Case: Change(0) $=0$
Running time: $O(k x)$
k is number of possible coins

Is this efficient? Isn't it polynomial? No, this is pseudo-polynomial time

Greedy Change Making

- Given: target value x, list of coins $C=\left[c_{1}, \ldots, c_{k}\right]$
(in this case $C=[1,5,10,25]$)
- Greedy choice: Repeatedly select the largest coin less than the remaining target value:

$$
\begin{aligned}
& \text { while }(x>0) \\
& \quad \text { let } c=\max \left(c_{i} \in\left\{c_{1}, \ldots, c_{k}\right\} \mid c_{i} \leq x\right) \\
& \quad \text { print } c \\
& \quad x=x-c
\end{aligned}
$$

Observation: We can rewrite this to take $\lfloor n / c\rfloor$ copies of the largest coin at each step. Then loop over values c_{i} from largest to smallest. Then if C is sorted....

Running time: $O(k)$
Polynomial-time!
k is number of possible coins

Greedy Change Making

- Given: target value x, list of coins $C=\left[c_{1}, \ldots, c_{k}\right]$ (in this case $C=[1,5,10,25]$)
- Repeatedly select the largest coin less than the remaining target value: while $(x>0)$

$$
\text { let } c=\max \left(c_{i} \in\left\{c_{1}, \ldots, c_{k}\right\} \mid c_{i} \leq x\right)
$$

print c

$$
x=\quad \text { Greedy approach: Only consider a single }
$$ case/subproblem, which gives an asymptotically-better

Observation: We can rewrite algorithm. When can we use the greedy approach?
Running time: $O(k \log x)$
k is number of possible coins
Polynomial-time! Size $n=\log x$

Greedy vs DP

- Dynamic Programming:
- Require Optimal Substructure
- Several choices for which small subproblem
- Greedy:
- Require Optimal Substructure

Log Cutting:

Maximum profit for each last cut

Longest Common Subsequence:
Max length with same last
character or with one or the other

Seam Carving:

Min energy seam that could connect with this pixel

- Must only consider one choice for small subproblem

Greedy Algorithms

- Require Optimal Substructure
- Optimal solution to a problem contains optimal solutions to subproblems
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Change Making Choice Property

- Our algorithm's Greedy choice: Choose largest coin less than or equal to target value
- Leads to optimal solution?
- For standard U.S. coins: Yes, coin chosen must be part of some optimal solution. We can prove it!
- For "unusual" sets of coins? We saw a counter-example.
- For U.S. postage stamps? Hmm...

Correctness of Greedy Algorithm

Optimal solution must satisfy following properties:

- At most 4 pennies
- At most 1 nickel
- At most 2 dimes
- Cannot contain 2 dimes and 1 nickel

Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

- Case 1: Suppose $x<5$
- Optimal solution must contain a penny (no other option available)
- Greedy choice: penny
- Case 2: Suppose $5 \leq x<10$
- Optimal solution must contain a nickel
- Suppose otherwise. Then optimal solution can only contain pennies (there are no other options), so it must contain $x>4$ pennies (contradiction)
- Greedy choice: nicke|
- Case 3: Suppose $10 \leq x<25$
- Optimal solution must contain a dime
- Suppose otherwise. By construction, the optimal solution can contain at most 1 nickel, so there must be at least 6 pennies in the optimal solution (contradiction)
- Greedy choice: dime

Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

- Case 4: Suppose $25 \leq x$
- Optimal solution must contain a quarter
- Suppose otherwise. There are two possibilities for the optimal solution:
- If it contains 2 dimes, then it can contain 0 nickels, in which case it contains at least 5 pennies (contradiction)
- If it contains fewer than 2 dimes, then it can contain at most 1 nickel, so it must also contain at least 10 pennies (contradiction)
- Greedy choice: quarter

Conclusion: in every case, the greedy choice is consistent with some optimal solution

Correctness of Greedy Algorithm

What about that 11-cent coin, the "tom"? How's that break this proof?

- Claim: argue that at every step, greedy choice is part of some optimal solution

> This argument no longer holds. Sometimes, it's better to take the dime; other times, it's better to take the 11 -cent piece.
> For 15: 1 tom +4 pennies vs. 1 dime +1 nickel.
> For 12: 1 tom +1 penny vs. 1 dime +2 pennies

- Revised Case 3: Suppose $11 \leq x<25$
- Optimal solution must contain a dimetom
- Suppose otherwise. By construction, the optimal solution can contain at most 1 nickel, so there must be at least 6 pennies in the optimal solution (contradiction).
- Greedy choice: dime tom

Wrap-up on Greedy basics

- An approach to solving optimization problems
- Finds optimal solution among set of feasible solutions
- Problem must have optimal substructure property
- Works in stages, applying greedy choice at each stage
- Makes locally optimal choice, with goal of reaching overall optimal solution for entire problem
- Proof needed to show correctness

Need more on Optimal Substructure Property?

- Detailed discussion on p. 379 of CLRS (chapter on Dynamic Programming)
- If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Another example: Shortest Path in graph problem
- Say P is min-length path from CHO to LA and includes DAL
- Let P_{1} be component of P from $C H O$ to $D A L$, and P_{2} be component of P from DAL to LA
$-P_{1}$ must be shortest path from CHO to DAL, and P_{2} must be shortest path from DAL to LA
- Why is this true? Can you prove it? Yes, by contradiction. (Try this at home!)

