
It’s time to “change” things up and start our unit on Greedy Algorithms! J
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Spring 2020 – slides for both Hott and Horton’s sections



Where We’re Going

• Terminology about optimization problems and greedy
algorithms (this video)

• Example 1: Coin Changing (this video)
– Contrast with dynamic programming approach
– Proofs of correctness

• Example 2: Interval Scheduling (next video)
• …
• Textbook readings: CLRS Chapter 16 (go for it!)
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Imagine a world without computerized cash registers!
The problem: Given an unlimited quantities of pennies, nickels, dimes, 
and quarters (worth value 1, 5, 10, 25 respectively), determine a set of 

coins (the change) for a given value 𝑥 using the fewest number of coins.
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How Would You Solve This?

• Would this be your algorithm?
– Generate each possible set of coins that sum to x.
– Determine which of these sets has the fewest coins.

• No, this is probably not at all what you thought of doing!
– It’s correct. But it’s a brute force approach.

• What would you do?
– Take a moment and try to describe your approach as an algorithm.

4



Change Making Algorithm

• Given: target value 𝑥, list of coins 𝐶 = [𝑐!, … , 𝑐"]
(in this case 𝐶 = [1, 5, 10, 25])

• Repeatedly select the largest coin less than the remaining 
target value:
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while(𝑥 > 0)
let 𝑐 = max(𝑐# ∈ {𝑐! , … , 𝑐"} | 𝑐# ≤ 𝑥)
print 𝑐
𝑥 = 𝑥 − 𝑐



Let’s reflect on this

• What’s its time-complexity?
– Looks like it’s 𝑂(𝑥) in the worst-case.  (Why do I say that?)

• Maybe it’s 𝑂(𝑘𝑥) if I really have to do a max() operation at each step

– We’ll come back to this.

• Does this always work?  I.e. how can we prove it to be correct?
– Intuitively you know it’s true for US coins, right?
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Some Terminology Before We Continue…

• Optimization problems: terminology
– A solution must meet certain constraints:

A solution is feasible
Example: All edges in solution are in graph, form a simple path.
– Solutions judged on some criteria:

Objective function
Example:  Sum of edge weights in path is smallest
– One (or more) feasible solutions that scores highest (by the objective 

function) is called the optimal solution(s)
• Both dynamic programming and the greedy approach are often 

good choices for optimization problems.

7



Greedy Strategy: An Overview
• Greedy strategy:
– Build solution by stages, adding one item to the partial solution we’ve 

found before this stage
– At each stage, make locally optimal choice based on the greedy 

choice (sometimes called the greedy rule or the selection function)
• Locally optimal, i.e. best given what info we have now

– Irrevocable: a choice can’t be un-done
– Sequence of locally optimal choices leads to globally optimal solution 

(hopefully)
• Must prove this for a given problem!
• Sometimes basis for approximation algorithms or heuristic algorithms used to 

get something close to optimal solution.
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Back to Coin Changing: Correctness?

• Can you think of how you might argue this strategy (algorithm) 
always choose the optimal solution for coin-changing?

• Maybe argue along these lines:
– If an algorithm did something different than what our algorithm 

does, then it won’t choose optimal solution.
– We’ll see proof later in slides.
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Warm Up, take 2

Given access to unlimited quantities of pennies, nickels, dimes, toms, and 
quarters (worth value 1, 5, 10, 11, 25 respectively), give 90 cents change 

using the fewest number of coins.
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11
cents



Greedy method’s solution

90 cents
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11
cents



Greedy solution not optimal!

90 cents
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Warm Up, take 2

Given access to unlimited quantities of pennies, nickels, dimes, toms, and 
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using the fewest number of coins.
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11
cents

We can solve coin changing with 
dynamic programming, too.

Will that work for this set of 
coins?



Dynamic Programming

• Requires Optimal Substructure
– Optimal solution to a problem contains optimal solutions to subproblems

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Identify Recursive Structure
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Possibilities for last coin

Change 𝑥 : minimum number of coins needed to give change for 𝑥 cents

Coins needed

Change 𝑥 − 25 + 1 if 𝑥 ≥ 25

Change 𝑥 − 11 + 1

Change 𝑥 − 10 + 1

Change 𝑥 − 5 + 1

Change 𝑥 − 1 + 1

if 𝑥 ≥ 11

if 𝑥 ≥ 10

if 𝑥 ≥ 5

if 𝑥 ≥ 1

Of course we need 
to define a data 
structure to 
remember partial 
results and fill it in 
some order.
We won’t address 
that here.



Identify Recursive Structure
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Change 𝑥 : minimum number of coins needed to give change for 𝑥 cents

Change 𝑥 − 25 + 1 if 𝑥 ≥ 25
Change 𝑥 − 11 + 1 if 𝑥 ≥ 11
Change 𝑥 − 10 + 1 if 𝑥 ≥ 10
Change 𝑥 − 5 + 1 if 𝑥 ≥ 5
Change 𝑥 − 1 + 1 if 𝑥 ≥ 1

Change 𝑥 =min

Base Case: Change 0 = 0

Correctness: The optimal 
solution must be 

contained in one of these 
configurations

Running time: 𝑂(𝑘𝑥)
𝑘 is number of possible coins

Is this efficient? Isn’t it polynomial?
No, this is pseudo-polynomial time

Size of input 𝑥 is how many bits to store 𝑥.
Size 𝑛 = lg 𝑥 so 𝑥 = 2!" #, so 𝑂 𝑘 2$



Greedy Change Making
• Given: target value 𝑥, list of coins 𝐶 = [𝑐!, … , 𝑐"]

(in this case 𝐶 = [1, 5, 10, 25])
• Greedy choice: Repeatedly select the largest coin less than the 

remaining target value:
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while(𝑥 > 0)
let 𝑐 = max(𝑐# ∈ {𝑐! , … , 𝑐"} | 𝑐# ≤ 𝑥)
print 𝑐
𝑥 = 𝑥 − 𝑐

Running time: 𝑂(𝑘) Polynomial-time!

Observation: We can rewrite this to take ⁄𝑛 𝑐 copies of the largest coin at each step.
Then loop over values 𝑐% from largest to smallest.  Then if C is sorted….

𝑘 is number of possible coins



Observation: We can rewrite this to take ⁄𝑛 𝑐 copies of the largest coin at each step

Greedy Change Making
• Given: target value 𝑥, list of coins 𝐶 = [𝑐!, … , 𝑐"]

(in this case 𝐶 = [1, 5, 10, 25])
• Repeatedly select the largest coin less than the remaining 

target value:
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while(𝑥 > 0)
let 𝑐 = max(𝑐# ∈ {𝑐! , … , 𝑐"} | 𝑐# ≤ 𝑥)
print 𝑐
𝑥 = 𝑥 − 𝑐

Running time: 𝑂(𝑘 log 𝑥)
Polynomial-time! Size 𝑛 = log 𝑥

Greedy approach: Only consider a single 
case/subproblem, which gives an asymptotically-better

algorithm. When can we use the greedy approach?

𝑘 is number of possible coins



Greedy vs DP

• Dynamic Programming:
– Require Optimal Substructure
– Several choices for which small subproblem

• Greedy:
– Require Optimal Substructure
– Must only consider one choice for small subproblem
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Log Cutting:
Maximum profit for each last cut

Longest Common Subsequence:
Max length with same last 
character or with one or the other

Seam Carving:
Min energy seam that could 
connect with this pixel



Greedy Algorithms

• Require Optimal Substructure
– Optimal solution to a problem contains optimal solutions to 

subproblems
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Change Making Choice Property

• Our algorithm’s Greedy choice:
Choose largest coin less than or equal to target value

• Leads to optimal solution?
– For standard U.S. coins:  Yes, coin chosen must be part of some 

optimal solution.  We can prove it!
– For “unusual” sets of coins? We saw a counter-example.
– For U.S. postage stamps?  Hmm…
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Correctness of Greedy Algorithm
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Optimal solution must satisfy following properties:
• At most 4 pennies
• At most 1 nickel
• At most 2 dimes
• Cannot contain 2 dimes and 1 nickel



Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

• Case 1: Suppose 𝑥 < 5
– Optimal solution must contain a penny (no other option available)
– Greedy choice: penny

• Case 2: Suppose 5 ≤ 𝑥 < 10
– Optimal solution must contain a nickel

• Suppose otherwise. Then optimal solution can only contain pennies (there are no other options), so 
it must contain 𝑥 > 4 pennies (contradiction)

– Greedy choice: nickel
• Case 3: Suppose 10 ≤ 𝑥 < 25

– Optimal solution must contain a dime
• Suppose otherwise. By construction, the optimal solution can contain at most 1 nickel, so there must 

be at least 6 pennies in the optimal solution (contradiction)
– Greedy choice: dime
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Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

• Case 4: Suppose 25 ≤ 𝑥
– Optimal solution must contain a quarter

• Suppose otherwise. There are two possibilities for the optimal solution:
– If it contains 2 dimes, then it can contain 0 nickels, in which case it contains at least 5 

pennies (contradiction)
– If it contains fewer than 2 dimes, then it can contain at most 1 nickel, so it must also 

contain at least 10 pennies (contradiction)
– Greedy choice: quarter
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Conclusion: in every case, the greedy choice is 
consistent with some optimal solution



Correctness of Greedy Algorithm

What about that 11-cent coin, the “tom”?  How’s that break this proof?

• Claim: argue that at every step, greedy choice is part of some optimal solution

• Case 1: Suppose 𝑛 < 5
– Optimal solution must contain a penny (no other option available)
– Greedy choice: penny

• Case 2: Suppose 5 ≤ 𝑛 < 10
– Optimal solution must contain a nickel

• Suppose otherwise. Then optimal solution can only contain pennies (there are no other options), so it must contain 𝑛 > 4 pennies 
(contradiction)

– Greedy choice: nickel

• Revised Case 3: Suppose 11 ≤ 𝑥 < 25
– Optimal solution must contain a dime tom

• Suppose otherwise. By construction, the optimal solution can contain at most 
1 nickel, so there must be at least 6 pennies in the optimal solution 
(contradiction).

– Greedy choice: dime tom
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This argument no longer holds. Sometimes, it’s 
better to take the dime; other times, it’s better 

to take the 11-cent piece.
For 15: 1 tom + 4 pennies vs. 1 dime + 1 nickel.
For 12:  1 tom + 1 penny vs. 1 dime + 2 pennies



Wrap-up on Greedy basics

• An approach to solving optimization problems
– Finds optimal solution among set of feasible solutions

• Problem must have optimal substructure property
• Works in stages, applying greedy choice at each stage
– Makes locally optimal choice, with goal of reaching overall optimal 

solution for entire problem

• Proof needed to show correctness
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Need more on Optimal Substructure Property?

• Detailed discussion on p. 379 of CLRS (chapter on Dynamic 
Programming)
– If A is an optimal solution to a problem, then the components of A are optimal 

solutions to subproblems

• Another example: Shortest Path in graph problem
– Say P is min-length path from CHO to LA and includes DAL
– Let P1 be component of P from CHO to DAL, and P2 be component of P from DAL 

to LA
– P1 must be shortest path from CHO to DAL, and P2 must be shortest path from 

DAL to LA
– Why is this true?  Can you prove it?  Yes, by contradiction. (Try this at home!)
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