
Spring 2020

1

Warm up
Simplify:

1 + 2 + 3 +⋯+ (𝑛 − 1) + 𝑛 =

2

1 + 2 + 3 + ⋯+ (𝑛 − 1) + 𝑛 =

𝑛 + 1

𝑛

𝑛 𝑛 + 1
2

Today’s Keywords

• Divide and Conquer
• Closest Pair of Points
• Matrix Multiplication
• Strassen’s Algorithm

3

CLRS Readings

• Chapter 4
• Chapter 33

4

Homeworks

• HW2 due Thursday 2/6 at 11pm
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Master Theorem
– Divide and Conquer

• HW3 coming Thursday
– Programming! (Java or Python 2/3)

5

Robbie’s Yard

6

There has to be an easier way!

7

Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000

8

Closest Pair of Points

9

1
2

3

4
5

6

7

8

Given:
A list of points

Return:
Pair of points with
smallest distance apart

Closest Pair of Points: Naïve

10

1
2

3

4
5

6

7

8

Given:
A list of points

Return:
Pair of points with
smallest distance apart

𝑂(𝑛,)Algorithm:
Test every pair of points,
return the closest.

We can do better!
Θ(𝑛 log 𝑛)

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate

11

Conquer:

Combine:

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and Right

Combine:

12

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and Right

Combine:
Return min of Left and
Right pairs Problem? ?

13

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2 Cases:

?

1. Closest Pair is
completely in Left or
Right

2. Closest Pair Spans our
“Cut”

Need to test points
across the cut

14

Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿2

𝛿3
Compare all points
within 𝛿 = min{𝛿2, 𝛿3}
of the cut.

2𝛿
How many are there?

15

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿2

𝛿3

2𝛿

Compare all points
within 𝛿 = min{𝛿2, 𝛿3}
of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2

+
𝑛
2

,

16

= Θ 𝑛,

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿2

𝛿3

2𝛿

We don’t need to test all
pairs!

Only need to test points
within 𝛿 of one another

17

Pigeonhole Principle Limits Possibilities

𝛿

18

Goal: find pair (i,j) where points i and j are
on opposite sides and where
𝛿c = distance(i,j) is minimum and 𝛿c < 𝛿

Consider points in ascending order by y-
coordinate.
1. For point i, do NOT calculate distance to

all n-1 other points. That would n-1
calculations for each point. Θ 𝑛,

2. Only the next k points (along the y-axis)
can be closer than 𝛿 to point i. Θ 𝑘𝑛
• What value k? You’ll see soon!

3. Calculate distance(i,j) for those k points.
Ignore those on same side. Keep the
minimum. Repeat for next point.

k=15: consider 4 rows of “fixed” grid
k=7: consider 2x4 “sliding” grid

𝛿 𝛿
Each small square
is: <

,
x <
,
𝛿
2

Reducing Search Space
Combine:
2. Closest Pair Spanned our
“Cut”
Need to test points across the
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into
square cubbies of size <

,

Each cubby will have at most 1
point!

19

Reducing Search Space: Next 15

20

2 ⋅ 𝛿

7

How many cubbies could
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to
≤ 15 other points

Combine:
2. Closest Pair Spanned our
“Cut”
Need to test points across the
cut

Divide the “runway” into
square cubbies of size <

,

Or, Reducing Search Space: Next 7

21

2 ⋅ 𝛿

7

How many cubbies could
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to
≤ 7 other points

Combine:
2. Closest Pair Spanned our
“Cut”

Imagine a sliding 2x4 grid of
square cubbies, each size <

,
.

Point under consideration aligned
with bottom of sliding grid.

𝛿

𝛿𝛿

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still
too expensive! We need 𝑂(𝑛)

Closest Pair of Points: Divide and Conquer

Solution: Maintain additional
information in the recursion
• Minimum distance among pairs of

points in the list
• List of points sorted according to
𝑦-coordinate

Sorting runway points by
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Listing Points in the Runway

1
2

3

4
5

6

7

8

25

Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿E,F
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿K,L
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed
by a single pass over the lists

Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the runway
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points
above it and save the closest pair

• Output closest pair among left, right, and
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points

above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer
Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the runway
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points
above it and save the closest pair

• Output closest pair among left, right, and
runway points

Matrix Multiplication

31

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛R)

𝑛

𝑛

Matrix Multiplication D&C

32

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

Divide:

Matrix Multiplication D&C

33

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐴E,E 𝐴E,,
𝐴,,E 𝐴,,,

𝐴𝐵 =
𝐴E,E𝐵E,E + 𝐴E,,𝐵,,E 𝐴E,E𝐵E,, + 𝐴E,,𝐵,,,
𝐴,,E𝐵E,E + 𝐴,,,𝐵,,E 𝐴,,E𝐵E,, + 𝐴,,,𝐵,,,

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

𝐵E,E 𝐵E,,
𝐵,,E 𝐵,,,

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2 + 4

𝑛
2

, Cost of
additions

Combine:

Matrix Multiplication D&C

34

𝑇 𝑛 = 8𝑇
𝑛
2 + 4

𝑛
2

,

𝑇 𝑛 = 8𝑇
𝑛
2 + Θ(𝑛,)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛,

𝑛\]^_ ` = 𝑛\]^a W = 𝑛R
Case 1!

𝑇 𝑛 = Θ(𝑛R)
We can do better…

Matrix Multiplication D&C

35

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐴E,E 𝐴E,,
𝐴,,E 𝐴,,,

𝐴𝐵 =
𝐴E,E𝐵E,E + 𝐴E,,𝐵,,E 𝐴E,E𝐵E,, + 𝐴E,,𝐵,,,
𝐴,,E𝐵E,E + 𝐴,,,𝐵,,E 𝐴,,E𝐵E,, + 𝐴,,,𝐵,,,

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

𝐵E,E 𝐵E,,
𝐵,,E 𝐵,,,

Idea: Use a Karatsuba-like technique on this

Strassen’s Algorithm

36

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐴E,E 𝐴E,,
𝐴,,E 𝐴,,,

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

𝐵E,E 𝐵E,,
𝐵,,E 𝐵,,,

Calculate:
𝑄E = 𝐴E,E + 𝐴,,, (𝐵E,E + 𝐵,,,)
𝑄, = 𝐴,,E + 𝐴,,, 𝐵E,E
𝑄R = 𝐴E,E(𝐵E,, − 𝐵,,,)
𝑄K = 𝐴,,,(𝐵,,E − 𝐵E,E)

𝑄L = 𝐴,,E − 𝐴E,E (𝐵E,E + 𝐵E,,)
𝑄F = 𝐴E,E + 𝐴E,, 𝐵,,,

𝑄V = 𝐴E,, − 𝐴,,, (𝐵,,E + 𝐵,,,)

𝐴E,E𝐵E,E + 𝐴E,,𝐵,,E 𝐴E,E𝐵E,, + 𝐴E,,𝐵,,,
𝐴,,E𝐵E,E + 𝐴,,,𝐵,,E 𝐴,,E𝐵E,, + 𝐴,,,𝐵,,,

𝑄E + 𝑄K − 𝑄F + 𝑄V 𝑄R + 𝑄F
𝑄, + 𝑄K 𝑄E − 𝑄, + 𝑄R + 𝑄L

Find 𝐴𝐵:

Number Mults.: 7 Number Adds: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛,

Strassen’s Algorithm

37

𝑇 𝑛 = 7𝑇
𝑛
2 +

9
2𝑛

,

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2𝑛

,

𝑛\]^_ ` = 𝑛\]^a V ≈ 𝑛,.WYV
Case 1!

𝑇 𝑛 = Θ 𝑛\]^a V ≈ Θ(𝑛,.WYV)

38

𝑛R

𝑛\]^a V

Strassen’s Algorithm

Is this the fastest?

39

Best possible
is unknown

May not even
exist!

