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Warm up
Simplify:

1 + 2 + 3 +⋯+ (𝑛 − 1) + 𝑛 =



2

1 + 2 + 3 + ⋯+ (𝑛 − 1) + 𝑛 =

𝑛 + 1

𝑛

𝑛 𝑛 + 1
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Today’s Keywords

• Divide and Conquer
• Closest Pair of Points
• Matrix Multiplication
• Strassen’s Algorithm
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CLRS Readings

• Chapter 4
• Chapter 33
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Homeworks

• HW2 due Thursday 2/6 at 11pm
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Master Theorem
– Divide and Conquer

• HW3 coming Thursday
– Programming! (Java or Python 2/3)
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Robbie’s Yard
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There has to be an easier way!
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Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how 
wide can the robot be?
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ROBO

mulcher

3000
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Closest Pair of Points
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Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart



Closest Pair of Points: Naïve
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Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart

𝑂(𝑛,)Algorithm:
Test every pair of points, 
return the closest.

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C
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Divide: How?
At median x coordinate
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Conquer: 

Combine: 



Closest Pair of Points: D&C
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Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
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Closest Pair of Points: D&C
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Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
Return min of Left and 
Right pairs Problem? ?

13



Closest Pair of Points: D&C
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LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans our 
“Cut”

Need to test points 
across the cut
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Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿2

𝛿3
Compare all points 
within 𝛿 = min{𝛿2, 𝛿3}
of the cut.

2𝛿
How many are there?
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Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿2

𝛿3

2𝛿

Compare all points 
within 𝛿 = min{𝛿2, 𝛿3}
of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2

+
𝑛
2

,
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Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿2

𝛿3

2𝛿

We don’t need to test all 
pairs!

Only need to test points 
within 𝛿 of one another
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Pigeonhole Principle Limits Possibilities

𝛿
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Goal: find pair (i,j) where points i and j are 
on opposite sides and where
𝛿c = distance(i,j) is minimum and 𝛿c < 𝛿

Consider points in ascending order by y-
coordinate.
1. For point i, do NOT calculate distance to 

all n-1 other points. That would n-1 
calculations for each point. Θ 𝑛,

2. Only the next k points (along the y-axis) 
can be closer than 𝛿 to point i. Θ 𝑘𝑛
• What value k? You’ll see soon!

3. Calculate distance(i,j) for those k points. 
Ignore those on same side. Keep the 
minimum. Repeat for next point.

k=15: consider 4 rows of “fixed” grid
k=7:  consider 2x4 “sliding” grid

𝛿 𝛿
Each small square
is: <

,
x <
,
𝛿
2



Reducing Search Space
Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into 
square cubbies of size <

,

Each cubby will have at most 1 
point!
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Reducing Search Space: Next 15

20

2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 15 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

Divide the “runway” into 
square cubbies of size <

,



Or, Reducing Search Space: Next 7
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2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 7 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”

Imagine a sliding 2x4 grid of 
square cubbies, each size <

,
.

Point under consideration aligned 
with bottom of sliding grid.

𝛿

𝛿𝛿



Closest Pair of Points: Divide and Conquer
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LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
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LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still 
too expensive! We need 𝑂(𝑛)



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 
𝑦-coordinate

Sorting runway points by 
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Listing Points in the Runway
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Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿E,F
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿K,L
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Matrix Multiplication
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1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛R)

𝑛

𝑛



Matrix Multiplication D&C
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

Divide:



Matrix Multiplication D&C
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐴E,E 𝐴E,,
𝐴,,E 𝐴,,,

𝐴𝐵 =
𝐴E,E𝐵E,E + 𝐴E,,𝐵,,E 𝐴E,E𝐵E,, + 𝐴E,,𝐵,,,
𝐴,,E𝐵E,E + 𝐴,,,𝐵,,E 𝐴,,E𝐵E,, + 𝐴,,,𝐵,,,

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

𝐵E,E 𝐵E,,
𝐵,,E 𝐵,,,

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2 + 4

𝑛
2

, Cost of 
additions

Combine:



Matrix Multiplication D&C
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𝑇 𝑛 = 8𝑇
𝑛
2 + 4

𝑛
2

,

𝑇 𝑛 = 8𝑇
𝑛
2 + Θ(𝑛,)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛,

𝑛\]^_ ` = 𝑛\]^a W = 𝑛R
Case 1!

𝑇 𝑛 = Θ(𝑛R)
We can do better…



Matrix Multiplication D&C
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐴E,E 𝐴E,,
𝐴,,E 𝐴,,,

𝐴𝐵 =
𝐴E,E𝐵E,E + 𝐴E,,𝐵,,E 𝐴E,E𝐵E,, + 𝐴E,,𝐵,,,
𝐴,,E𝐵E,E + 𝐴,,,𝐵,,E 𝐴,,E𝐵E,, + 𝐴,,,𝐵,,,

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

𝐵E,E 𝐵E,,
𝐵,,E 𝐵,,,

Idea: Use a Karatsuba-like technique on this



Strassen’s Algorithm
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎E 𝑎, 𝑎R 𝑎K
𝑎F 𝑎L 𝑎V 𝑎W
𝑎X 𝑎EY 𝑎EE 𝑎E,
𝑎ER 𝑎EK 𝑎EF 𝑎EL

𝐴E,E 𝐴E,,
𝐴,,E 𝐴,,,

𝐵 =

𝑏E 𝑏, 𝑏R 𝑏K
𝑏F 𝑏L 𝑏V 𝑏W
𝑏X 𝑏EY 𝑏EE 𝑏E,
𝑏ER 𝑏EK 𝑏EF 𝑏EL

𝐵E,E 𝐵E,,
𝐵,,E 𝐵,,,

Calculate:
𝑄E = 𝐴E,E + 𝐴,,, (𝐵E,E + 𝐵,,,)
𝑄, = 𝐴,,E + 𝐴,,, 𝐵E,E
𝑄R = 𝐴E,E(𝐵E,, − 𝐵,,,)
𝑄K = 𝐴,,,(𝐵,,E − 𝐵E,E)

𝑄L = 𝐴,,E − 𝐴E,E (𝐵E,E + 𝐵E,,)
𝑄F = 𝐴E,E + 𝐴E,, 𝐵,,,

𝑄V = 𝐴E,, − 𝐴,,, (𝐵,,E + 𝐵,,,)

𝐴E,E𝐵E,E + 𝐴E,,𝐵,,E 𝐴E,E𝐵E,, + 𝐴E,,𝐵,,,
𝐴,,E𝐵E,E + 𝐴,,,𝐵,,E 𝐴,,E𝐵E,, + 𝐴,,,𝐵,,,

𝑄E + 𝑄K − 𝑄F + 𝑄V 𝑄R + 𝑄F
𝑄, + 𝑄K 𝑄E − 𝑄, + 𝑄R + 𝑄L

Find 𝐴𝐵:

Number Mults.: 7 Number Adds: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛,



Strassen’s Algorithm
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𝑇 𝑛 = 7𝑇
𝑛
2 +

9
2𝑛

,

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2𝑛

,

𝑛\]^_ ` = 𝑛\]^a V ≈ 𝑛,.WYV
Case 1!

𝑇 𝑛 = Θ 𝑛\]^a V ≈ Θ(𝑛,.WYV)
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𝑛R

𝑛\]^a V

Strassen’s Algorithm



Is this the fastest?

39

Best possible 
is unknown

May not even 
exist!


