CS4102 Algorithms

Spring 2020

Warm up

Simplify:
1+24+3+-+n—1)+n=



nn+1)

14243+ +m—-1)+n= 5

n+1



Today's Keywords

Divide and Conquer

Closest Pair of Points
Matrix Multiplication
Strassen’s Algorithm



CLRS Readings

 Chapter4
* Chapter 33



Homeworks

e HW2 due Thursday 2/6 at 11pm
— Written (use Latex!) — Submit BOTH pdf and zip!
— Asymptotic notation
— Recurrences
— Master Theorem
— Divide and Conquer

e HW3 coming Thursday
— Programming! (Java or Python 2/3)



o

S
VI
19D,
D
@
@

®
o




There has to be an easier way!




Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how
wide can the robot be?



Closest Pair of Points

®

Given:
A list of points

Return:
Pair of points with
smallest distance apart

©




Closest Pair of Points: Nalve

Given: @ --------------------------- 20,

A list of points

Return: @ @
Pair of points with @

smallest distance apart

Algorithm: 0(n?%)

Test every pair of points, @
return the closest. @ \
We can do better!

10 O(nlogn)




Closest Pair of Points: D&C

Divide: How? @
. . ®
At median x coordinate
Conquer: © @
®
Combine: ©)
®

11




Closest Pair of Points: D&C

Divide: @
At median x coordinate

Conquer: ©

o @
Recursively find closest (®

pairs from Left and Right

Combine:

®

12 LeftPoints

RightPoints




Closest Pair of Points: D&C

Divide:
At median x coordinate

Conquer:

Recursively find closest
pairs from Left and Right

Combine:
Return min of Left and
Right pairs  Problem?

13

LeftPoints

RightPoints




Closest Pair of Points: D&C

Combine:

2 Cases: ©) @

1. Closest Pair is
completely in Left or ®

i @

2. Closest Pair Spans our
llcut”

Need to test points
®
across the cut

14 LeftPoints RightPoints




2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

Compare all points
within § = min{d;, 6}
of the cut.

How many are there?

15

Spanning the Cut

Combine:

©

®

LeftPoints

RightPoints




Spanning the Cut

Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

Compare all points
within 6 = min{é;, 6r}
of the cut.

How many are there?

T(n) = 2T (g) + (12—1)2= 0(n?)
16

LeftPoints

RightPoints




Combine:

2. Closest Pair Spanned
our “Cut”

Need to test points
across the cut

We don’t need to test all
pairs!

Only need to test points
within 6 of one another

17

Spanning the Cut

LeftPoints

RightPoints




Pigeonnole Principle Limits Possibllities

Goal: find pair (i,j) where points i and j are 0 0
on opposite sides and where Ea‘;h 5(2“3” square
6. = distance(i,j) is minimum and §. < & Is:9%3
Consider points in ascending order by y- %
coordinate.
1. For pointi, do NOT calculate distance to O

all n-1 other points. That would n-1
calculations for each point. ©(n?)

2. Only the next k points (along the y-axis) ? P .
can be closer than 6 to pointi. O(kn) o & o
*  What value k? You'll see soon!

3. Calculate distance(i,j) for those k points. @) o
lgnore those on same side. Keep the | O
minimum. Repeat for next point. | 0]

k=15: consider 4 rows of “fixed” grid o

k=7: conside1rg2x4 “sliding” grid o




Combine

Reducing Search Space

2. Closest Pair Spanned our

IICutH

Need to test points across the

cut

Divide the “runway” into

. )
square cubbies of size >

Each cubby will have at most 1

point!

19

________________________________

________________________________

________________________________

_______________________________




Reducing Search Space: Next 15

Combine:

_________________________________________________________________

2. Closest Pair Spanned our
IICutH

Need to test points across the
cut

Divide the “runway” into

. )
square cubbies of size >

How many cubbies could
contain a point < 6 away?

Each point compared to
< 15 other points

20



Or, Reducing Search Space

Combine:

________________________________________________________________

2. Closest Pair Spanned our
llCutH

Imagine a sliding 2x4 grid of

. . 0 !
square cubbies, each size S 13 114 15

_______________________________________________________________

Point under consideration aligned 3 10 11 12
with bottom of sliding grid. ' '

How many cubbies could
contain a point < § away?

Each point compared to
< 7 other points




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair @
of points in each list @
Base case?

Combine:

e Construct list of points in the runway
(x-coordinate within distance § of median)

* Sort runway points by y-coordinate

e Compare each point in runway to 15 points @
above it and save the closest pair

* Output closest pair among left, right, and
runway points LeftPoints RightPoints




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

-~

But sorting is an O(nlogn)
algorithm — combine step is still
too expensive! We need 0(n)

o
* Construct list of points i ay
(x-coordinate within dista of median)

* Sort runway points by y-coordinate
e Compare each point in runway to 15 points
above it and save the closest pair

* Output closest pair among left, right, and
runway points LeftPoints RightPoints




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:

Construct list of points in the runway

(x-coordinate within distance § of median)

Sort runway points by y-coordinate = =—)
Compare each point in runway to 15 points

above it and save the closest pair

Output closest pair among left, right, and

runway points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

e List of points sorted according to
y-coordinate

Sorting runway points by
y-coordinate now becomes a merge



Listing Points In the Runway

Output on Left: © 0
Closest Pair: (1,5), 61 5

Sorted Points: [3,7,5,1]
Output on Right: @

Closest Pair: (4,6), 846 (6

Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Runway Points: [8,7,6,5,2]

by a single pass over the lists LeftPoints RightPoints

®
Both of these lists can be computed (®)




Closest Pair of Points: Divide and Conguer

Initialization: Sort points by x-coordinate Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points Divide: Partition points into two lists of points
based on x-coordinate (split at the median x) based on x-coordinate (split at the median x)
Conquer: Recursively compute the closest pair Conquer: Recursively compute the closest pair
of points in each list of points in each list
Base case? ‘
Combine: Combine:
e Construct list of points in the runway * Merge sorted list of points by y-coordinate
(x-coordinate within distance § of median) and construct list of points in the runway
* Sort runway points by y-coordinate (sorted by y-coordinate)
e Compare each point in runway to 15 points e Compare each point in runway to 15 points
above it and save the closest pair above it and save the closest pair
* Qutput closest pair among left, right, and e OQutput closest pair among left, right, and

runway points runway points



Closest Pair of Points: Divide and Conguer

What is the running time?

O(nlogn)

T(n) <

T(n) =2T(n/2) + O(n)

Case 2 of Master’s Theorem
T(n) =0O(nlogn)

@(n log n) Initialization: Sort points by x-coordinate

0(1)

2T(n/2)

O(n)

O(n)

o)

Divide: Partition points into two lists of points
based on x-coordinate (split at the median x)

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the runway
(sorted by y-coordinate)

* Compare each point in runway to 15 points
above it and save the closest pair

e OQutput closest pair among left, right, and
runway points



Matrix Multiplication

n
1 2 31 [2] (4] |6
ni4 5 6|X|8| 10| [12
7 8 91 114| 16| (13
2+16+42 4+20+48 6+ 24+ 541
(60 72 84
= 1132 162 192
204 252 300

Run time? 0(n®)

31



Matrix Multiplication D&C

Multiply nXn matrices (A and B)
Divide:

32



Matrix Multiplication D&C

Multiply nXn matrices (A and B)

.

J

Al,l
A= 2
A2,1 )
Combine:
A{{Bi1+ A44-B
AB :[ 1,1D01,1 1,2D2,1

Ay11B1,+A1,B55

Ay 1B11+A2By1 Ay1Bi, +A32B5,

Cost of

Runtime? T(n) = 8T(

additions




Matrix Multiplication D&C

T(n) = 8T (5) + 4 (72—1)2
T(n) = 8T (g) + O(n?)

a=8b=2f(n) =n?
Case 1!
nlogpa — plogz 8 — 4,3

T(n) = 0(n)
We can do better...



Matrix Multiplication D&C

Multiply nXn matrices (A and B)

J
)
J

Ay1B11+A1,B,1 A11B1,+ 41,855

AB =
Ay1B11+A2B,1 Az1Bi,+ A,B55

|Idea: Use a Karatsuba-like technique on this

35



\ O

| == =
\ >
[

A= % J  B= & <
A4 I A;, J B, 1 I B, )
Calculate: Find AB:
Q1 = (A11+ A22)(B1a + By2) [Q1 + Q04— Qs+ 07 Q3 + 05 ]
Q2 = (A1 +Az2)By1y Q2 + Q4 Q1 — Q2+ 03+ Qs

Q3 = A11(B12 — B22)
Qs = A22(B21 — B11)
Qs = (A1 + A12)B2y
Qs = (A21— A11)(B11 + B12)
Q7 = (A12 — A22)(By1 + Byy)

Ay1B11+A1,B54

Ay 1By, + A1,sz,2]
Ay1B11+A,,B;,

Ay 1B, +A;,B;,
Number Mults.: 7 Number Adds: 18

T(n) = 7T (E)

9
4+ 2
> n

2 36

ay



Strassen’s Algorithm

T(n) =77 (5) + 2

27 2

9
a=7b=2f(n) =§n2

nlogb a — nlogz 7 ~ n2807

Case 1!

T(Tl) — @(nlogz 7) ~ @(n2.807)

37



Strassen’s Algorithm

;
//

i // i
i raes e




s this the fastest?

3.0

naive
29 - Best possible
is unknown
Strassen
2.8 ‘
- Bini et al.
May not even
2.7 ¢ .
— exist!
2.6
| Schonhage § ¢ omani
251 Coppersmith, Winograd Sirassen
2.4 i Coppersmith, Winograd Stothers
Williams
T R S R | T O TR B T | T R S B T R S R | I Year 39

1950 1960 1970 1980 1990 2000 2010



