Interval Scheduling

- Input: List of events with their start and end times (sorted by end time)
- Output: largest set of non-conflicting events (start time of each event is after the end time of all preceding events)

i party

[1, 2.25]	Alumni Lunch
[2, 3.25]	CS4102
[3, 4]	CHS Prom
[4, 5.25]	Bingo
[4.5 <i>,</i> 6]	SCUBA lessons
[5, 7.5]	Roller Derby Bout
[7.75, 11]	UVA Football watch

Interval Scheduling DP

 $Best(t) = \max \#$ events that can be scheduled before time t

Greedy Interval Scheduling

- Step 1: Identify a greedy choice property
 - Options:
 - Shortest interval
 - Fewest conflicts

• Earliest start

Interval Scheduling Run Time

Find event ending earliest, add to solution, Remove it and all conflicting events,

Repeat until all events removed, return solution

```
Equivalent way
```

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Exchange Argument for Earliest End Time

- Claim: earliest ending interval is always part of <u>some</u> optimal solution
- Let $OPT_{i,j}$ be an optimal solution for time range [i, j]
- Let a^* be the first interval in [i, j] to finish overall
- If $a^* \in OPT_{i,j}$ then claim holds
- Else if a^{*} ∉ OPT_{i,j}, let a be the first interval to end in OPT_{i,j}
 - By definition a^* ends before a, and therefore does not conflict with any other events in $OPT_{i,j}$
 - Therefore $OPT_{i,j} \{a\} + \{a^*\}$ is also an optimal solution
 - Thus claim holds