
Spring 2020

Warm up
Decode the line below into English

(hint: use Google or Wolfram Alpha)

1
·· ·-·· ·· -·- · ·- ·-·· --· --- ·-· ·· - ···· -- ···

Warm up
Decode the line below into English

(hint: use Google or Wolfram Alpha)

2
·· ·-·· ·· -·- · ·- ·-·· --· --- ·-· ·· - ···· -- ···

Spring 2020

Today’s Keywords

• Greedy Algorithms
• Exchange Argument
• Choice Function
• Prefix-free code
• Compression
• Huffman Code

3

CLRS Readings

• Chapter 16

4

Homeworks

• HW6 Due Sunday, April 5 @ 11pm
– Written (use latex)
– DP and Greedy

• EC1 also due Tuesday, November 5 @ 11pm
– No office hours for that assignment

• HW4 grades coming later this week

5

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

6

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

7

Sam Morse

• Engineer
and artist

8

Message Encoding
• Problem: need to electronically send a message

to two people at a distance.
• Channel for message is binary (either on or off)

9

𝑚

How can we do it?

• Take the message, send it over
character-by-character with an
encoding

10

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green a: 2

d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

How efficient is this?

Each character requires 4 bits
ℓ# = 4

11

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓# = *
#+,-,#./- #

ℓ#𝑓# = 68 ⋅ 4 = 272

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

How efficient is this?

Each character requires 4 bits
ℓ# = 4

12

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓# = *
#+,-,#./- #

ℓ#𝑓# = 68 ⋅ 4 = 272

Better Solution: Allow for different
characters to have different-size encodings
(high frequency → short code)

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

More efficient coding

13

𝐵 𝑇, 𝑓# = *
#+,-,#./- #

ℓ#𝑓#

Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

More efficient coding

14

𝐵 𝑇, 𝑓# = *
#+,-,#./- #

ℓ#𝑓#

When this is big

Make this small

Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Morse Code

15
Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Problem with Morse Code

16

Decode:

Problem with Morse Code

17

Decode:
A A

ET ET
R T
EN T

Ambiguous Decoding

Prefix-Free Code

• A prefix-free code is codeword table 𝑇 such
that for any two characters 𝑐6, 𝑐7, if 𝑐6 ≠ 𝑐7
then 𝑐𝑜𝑑𝑒(𝑐6) is not a prefix of 𝑐𝑜𝑑𝑒(𝑐7)

18

g
e
l
i
w
…

0
10
110
1110
11110
…

1111011100011010
w i gg l e

Binary Trees = Prefix-free Codes

• I can represent any prefix-free code as a binary tree
• I can create a prefix-free code from any binary tree

19

g
e
l
i
w
…

0
10
110
1110
11110
…

g

e

l

i

w

0

0

0

0

0

1

1

1

1

g e l i w

g
e
l
i
w
…

00
01
10
110
111
…

0

0 0
0

1

1
1

1

Goal: Shortest Prefix-Free Encoding

• Input: A set of character frequencies {𝑓#}
• Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓# = *
#+,-,#./- #

ℓ#𝑓#

20

Goal: Shortest Prefix-Free Encoding

• Input: A set of character frequencies {𝑓#}
• Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓# = *
#+,-,#./- #

ℓ#𝑓#

21

Huffman Coding!!

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

22

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

23

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

24

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

25

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

26

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

27

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

28

G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

29

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

30

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

31

Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least frequent

characters are siblings
• Exchange argument

– Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction

32

Showing Huffman is Optimal

• First Step: Show any optimal tree is “full” (each node has either
0 or 2 children)

33

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

Showing Huffman is Optimal

• First Step: Show any optimal tree is “full” (each node has either
0 or 2 children)

34

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in
red subtree are shorter in 𝑇′, without creating
any longer codes

Huffman Exchange Argument
• Claim: if 𝑐6, 𝑐7 are the least-frequent characters, then there is

an optimal prefix-free code s.t. 𝑐6, 𝑐7 are siblings
– i.e. codes for 𝑐6, 𝑐7 are the same length and differ only by their last

bit

35𝑐6

𝑇DE.

𝑐7

Case 1: Consider some optimal tree 𝑇DE.. If 𝑐6, 𝑐7 are siblings in this
tree, then claim holds

Huffman Exchange Argument
• Claim: if 𝑐6, 𝑐7 are the least-frequent characters, then there is

an optimal prefix-free code s.t. 𝑐6, 𝑐7 are siblings
– i.e. codes for 𝑐6, 𝑐7 are the same length and differ only by their last

bit

36

𝑐7

𝑎

𝑐6

𝑇DE.

𝑏

Case 2: Consider some optimal tree 𝑇DE., in which 𝑐6, 𝑐7 are not siblings

Let 𝑎, 𝑏 be the two characters of lowest
depth that are siblings
(Why must they exist?)

Case 2: 𝑐6, 𝑐7 are not siblings in 𝑇DE.

37

𝑐7

𝑎

𝑐6

𝑇DE.

𝑏

• Claim: the least-frequent characters (𝑐6, 𝑐7), are siblings in
some optimal tree
𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐6 with 𝑎 does not increase cost of the tree.
Assume: 𝑓#6 ≤ 𝑓,

𝑐7

𝑐6

𝑎

𝑇′

𝑏

𝐵 𝑇DE. = 𝐶 + 𝑓#6ℓ#6 + 𝑓,ℓ, 𝐵 𝑇′ = 𝐶 + 𝑓#6ℓ, + 𝑓,ℓ#6

Case 2: 𝑐6, 𝑐7 are not siblings in 𝑇DE.

38

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐6 with 𝑎 does not increase cost of the tree.
Assume: 𝑓#6 ≤ 𝑓,

𝐵 𝑇DE. = 𝐶 + 𝑓#6ℓ#6 + 𝑓,ℓ, 𝐵 𝑇′ = 𝐶 + 𝑓#6ℓ, + 𝑓,ℓ#6

• Claim: the least-frequent characters (𝑐6, 𝑐7), are siblings in
some optimal tree

Case 2: 𝑐6, 𝑐7 are not siblings in 𝑇DE.

40

𝑐7

𝑎

𝑐6

𝑇DE.

𝑏

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐6 with 𝑎 does not increase cost of the tree.
Assume: 𝑓#6 ≤ 𝑓,

𝑐7

𝑐6

𝑎

𝑇′

𝑏

𝐵 𝑇DE. = 𝐶 + 𝑓#6ℓ#6 + 𝑓,ℓ, 𝐵 𝑇′ = 𝐶 + 𝑓#6ℓ, + 𝑓,ℓ#6

𝐵 𝑇DE. − 𝐵 𝑇K = (𝑓,−𝑓#6)(ℓ, − ℓ#6)

• Claim: the least-frequent characters (𝑐6, 𝑐7), are siblings in
some optimal tree

Case 2:Repeat to swap 𝑐7, 𝑏!

42

𝑐7

𝑐6

𝑎

𝑇′

𝑏

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐7 with 𝑏 does not increase cost of the tree.
Assume: 𝑓#7 ≤ 𝑓L

𝑏

𝑐6

𝑎

𝑇′′

𝑐7

𝐵 𝑇′ = 𝐶 + 𝑓#7ℓ#7 + 𝑓LℓL 𝐵 𝑇′′ = 𝐶 + 𝑓#7ℓL + 𝑓Lℓ#7

𝐵 𝑇′ − 𝐵 𝑇KK = (𝑓L−𝑓#7)(ℓL − ℓ#7)

• Claim: the least-frequent characters (𝑐6, 𝑐7), are siblings in
some optimal tree

Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least frequent

characters are siblings
• Exchange argument

– Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction

44

Finishing the Proof

• Show Optimal Substructure
– Show treating 𝑐6, 𝑐7 as a new “combined” character gives optimal

solution

45

Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐6 𝑐7

𝑐6 𝑐7

𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

46

𝑐6 𝑐7

𝑐6 𝑐7

𝜎

𝐹′

𝐹

Optimal Substructure
• Claim: An optimal solution for 𝐹 involves finding an optimal

solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

47

𝑇

𝑐6

𝜎

𝑐7

𝑇′
𝜎

If this is optimal Then this is optimal

Optimal Substructure
• Claim: An optimal solution for 𝐹 involves finding an optimal

solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

49

𝑇

𝑐6

𝜎

𝑐7

𝑐6

𝑈

𝑐7

Optimal Substructure

51

𝑈′

𝜎

𝑐6

𝑈

𝑐7

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

53

𝑐6 𝑐7

𝑐6 𝑐7

𝜎

𝐹′

𝐹

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

54

𝑐6 𝑐7

𝑐6 𝑐7

𝜎

𝐹′

𝐹

𝑇′
𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

55

𝑐6 𝑐7

𝑐6 𝑐7

𝜎

𝐹′

𝐹

𝑇′
𝜎

𝑇

𝑐6

𝜎
𝑐7

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

56

𝑐6 𝑐7

𝑐6 𝑐7

𝜎

𝐹′

𝐹

𝑇′
𝜎

𝑇

𝑐6

𝜎
𝑐7

𝑐6

𝑈

𝑐7

>

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐6, 𝑐7 as children to 𝜎

57

𝑐6 𝑐7

𝑐6 𝑐7

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐6

𝜎
𝑐7

𝑐6

𝑈

𝑐7

>

