CS4102 Algorithms

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

CS4102 Algorithms

ABCDEFGHIJKLMNOPQRST

[

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

Today's Keywords

Greedy Algorithms

E;change Argument
Choice Function
Prefix-free code

Compression
Huffman Code

* Chapter 16

CL

RS

Readings

Homeworks

e HW6 Due Sunday, April 5 @ 11pm

— Written (use latex)
— DP and Greedy

e EC1 - ophonal homewerk
gt
— No office hours for that assignment

* HW4 grades coming later this week

Greedy Algorithms

* Require Optimal Substructure

— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

. How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

—Xchange argument

* Shows correctness of a greedy algorithm

e |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Sam Morse

* Engineer
and artist

\Vessage =ncoding

* Problem: need to electronically send a message
to two people at a distance.

* Channel for message is binary (either on or off)

How can we do 7

: : : : Character s [('L\w
wiggle, wiggle, wiggle like a gypsy queen Frequency Encoding
wiggle, wiggle, wiggle all dressed in green a: 2 ~+—>|0000

0001
0010
0011 |
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110 | w0

Q.
N
> w

* Take the message, send it over
character-by-character with an S
encoding

< scwo3Oo0UT S TA OO
NghRPr®N AR wPr ®p o

How efficient Is this”?

) _)) Character
3 (wiggle wiggle wiggle like a gypsy queen Frequency Encoding
wiggle wiggle wiggle all dressed in green a: 2 0000
d: 2 0001
Each character requires 4 bits e: 13 0010
P =4 g: 14 0011
_ — 1: 8 0100
Cost of encoding: k: 1 0101
I: 9 0110
BU,([N=) 4 =68-4=272 3 | o
- = characterc.—~—- - p:1 1000
- q: 1 1001
r:2 1010
s: 3 1011
u: 1 1100
W: 6 1101
y: 2 1110

How efficient Is this”?

_ _ . _ Character

wiggle wiggle wiggle like a gypsy queen Frequency Encoding

wiggle wiggle wiggle all dressed in green a: 2 0000

, _ d: 2 0001

Each character requires 4 bits e: 13 0010

— 1 0011

11 8 0100

Cost of encoding: k: 1 0101

I: 9 0110

B(T,{f.}) = z =684 =272 n:3 0111

characterc p: 1 1000

g:1 1001

r:2 1010

s: 3 1011

Better Solution: Allow for different u: 1 1100

characters to have different-size encodings wW: 6 1101

(high frequency - short code) y: 2 1110

Character Frequency

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

More efficient coding

BUL D=) L

character c

etaoinshrdlcumwfgypbvk|jxaqgz

H

13

Character Frequency

More efficient coding

0.14 When this is big

0.12

BID=) L

0.1
character c
0.08 Make this small
0.06
0.04

0.02

etaoinshrdlcumwfgypbvk|jxaqgz

H

14

Character Frequency

Morse Code

0.14 International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.

3. The space between parts of the same letter is one unit.

0.12 4. The space between letters is three units.
5. The space between words is seven units.

0.1 Ue o mm
Veeoomm
We mm mm
X mmm o ¢ mmm

0.08 — Y mum o mmm mmm
4 B KX

0.06

0.04

0.02

Ponm mme
Qmm mmm ¢ =
Roemme

aoinshrdlcumwfgypbvijqz é

0

D

15

AP0 UVOZE2rAR——IOMMUOm™>

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.

3. The space between parts of the same letter is one unit.

4. The space between letters is three units.
5. The space between words is seven units.

11l
® 00
1
o
N<XXS<C
|

Decode:

Problem with Morse Code

16

AP0 UVOZE2rAR——IOMMUOm™>

Problem with Morse Code

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.

3. The space between parts of the same letter is one unit. A A
4. The space between letters is three units.
5. The space between words is seven units.

Decode: PR P —

ET ET
R T
EN T

Ii::l:’lll
ag o0l <5e
il .. °l
I o
TIHE
I..
o
.II

Ambiguous Decoding

Prefix-Free Code

* A prefix-free code is codeword table T such
that for any two characters ¢4, ¢,, if ¢; # ¢y

then code(c,) is not a prefix of code(c,)

g O 1111011100011010
e 10 w | ggl e
| 110

i 1110

w 11110

Sinary lrees =

Prefix-Tree Codes

* | can represent any prefix-free code as a binary tree

. Ibcan create a prefix-free code from any binary tree
v

0

10

| 110

i 1110

M '0Q

110
111

19

Goal: Shortest Prefix-

—ree

* Input: A set of character frequencies {f.}

—Ncoding

* Output: A prefix-free code T' which minimizes

BI,D=) Lf

character c

20

(Goal: Shortest Prefix-

—ree

* Input: A set of character frequencies {f.}

—Ncoding

* QOutput: A prefix-free code T which minimizes

BUL D=) 4l

character c

Huffman Coding!!

21

Greedy Algorithms

* Require Optimal Substructure

pph o

— Solution to larger problem contains the solution to a smaller one

o ‘(,hh‘& \

— Only one subproblem to consider!

/

* |dea:
1. Identify a greedy choicigﬂgp_e_rjcy

e How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

22

Huffman Algorithm

Gree% Chota oo
* Choose the least frequent pair,

combine into a subtree

23

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

Subproblem of sizen — 1!

24

Huffman Algorithm

* Choose the least frequent pair,

combine mtoM
\

1

25

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree B

26

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

e

27

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

—fam

28

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

—

1

29

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

|1 OA '1
OA oA OA .A

v

Pre&\iy - Free

Code

ogbm\

30

—Xchange argument

* Shows correctness of a greedy algorithm

* |dea:
— Show exchanging an item from an arbitrary optimal solution with

\

your greedy choice makes the new solution no worse

— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Showing Huffman is Optimal

* Overview:
— Show that there is an optimal tree in which the least frequent
characters are siblings

e Exchange argument

— Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution

* Proof by contradiction

Showing Huffman is Optimal

* First Step: Show any optimal tree is “full” (each node has either
0 or 2 children)

33

Showing Huffman is Optimal

* First Step: Show any optimal tree is “full” (each node has either
0 or 2 children)

T'is a “better” tree than T, because all codes in
red subtree are shorter in T’, without creating
any longer codes

34

Huffman Exchange Argument

* Claim: if ¢4, c; are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢;, ¢, are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only by their last
bit

Case 1: Consider some optimal tre% Topt& If ¢1, c; are siblings in this
tree, then claim holds

35

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters, then there is

e

an optimal prefix-free code s.t. ¢4, ¢, are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only by their last
bit

Case 2: Consider some optimal tree T, in which ¢y, ¢; are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?) — full free 0 o2 childeen

\des -Shows Kok Swap a0 oad C, Kok | de ol

11 Creay e Cog+ DfQ Ke '\"MQ CQ"\@‘L“‘j}
- TC(IL'-A ﬂ\,\{\cr\-) wXS (5 end L.

Agsome * %‘ < Qo\ b ol 'Cca < Qb

36

Case 2. ¢4, ¢, are not siblings iN Tyt

* Claim: the least-frequent characters (¢4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

Idea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < f, o

B(Topt) = C + ferter + fata

Case 2. ¢4, ¢, are not siblings iN Tyt

* Claim: the least-frequent characters (c4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f-1 < fq

B(Topt) C+fc11€c1 +fa B(T,)_C‘l'fclf +fa cl
?*5 %(T\ Ct Lol v Gl - (C—*—\: Qo+ Fu Qc)
ST R N o DR SR N Y NS
S PN IR Y O
=Le - t0) + P (R -R0)

=k, (L*—QB Lo -4
= (£ 2 (- 1) = ¢)

Case 2. ¢4, ¢, are not siblings iN Tyt

* Claim: the least-frequent characters (¢4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping c; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) = € + ferber + fata B(T') = CH ferta t fatar

Case 2:Repeat to swap c,, b!

* Claim: the least-frequent characters (¢4, ¢,), are siblings in

: 1DIINGS
some optimal tree

=
a, b = lowest-depth siblings

Idea: show that swapping ¢, with b does not increase cost of the tree.
Assume: f.» < f}

B(T,)=C+fcz'€cz +fb'£b B(T”)=C+f62'£b+fb'ec2

=0 =0
=0

T ¢ olis Bl dor c)a\'tv\
— Lelds.

Showing Huffman is Optimal

e Overview:

— Show that there is an optimal tree in which the least frequent
characters are siblings — greedy deite progechy wnek N 4

e Exchange argument

— Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution - ephel b e \/

* Proof by contradiction

f

44

-Inishing the Proof

* Show Optimal Substructure

— Show treating ¢4, ¢, as a new “combined” character gives optimal

N

solution

Why does solving this smaller problem:

Give an optimal solution to this?: —

[I 0 O O B O N Y

45

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F', then adding ¢4, ¢, as children to o

- F’

N

F

46

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

If this is optimal Then this is optimal
F

\

¥

'PO/ ='Cc\ ""Q(z. gLC\ - QO’ *]’

Q.C.z, = QO’ *J"'
2= Cr 8l), (1)

—_—
——

86)= by (& 6.

—

[8):=em-F, L, | :

| _ pphad st :
%" . Optimal Substructure

_ So\)":m -1
TS

* Claim: An optimal solution for F involves finding an optimal

solution for F’, then adding ¢, ¢, as children to o
c)((’ﬂc‘

Spae dwnined = thendichn,
Ml VS not o(‘\‘im«\.'ﬂnef\
Wy U b o louwes —cord e
(VY is oe-"?m\ &r "—\

)<)

L 1)

49

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal

solution for F’, then adding ¢, ¢, as children to o
AN @\

re\o\c.(z_ Qo
l
Cﬂ"\""] new slika & ¥

kvw—‘ %(\L\ - %(ﬂ

B(w) = B_(-E_—’CC.|’QL7,
< BF) -+, —+e
= i)

_ | R(w) < BEG)
lci,\ﬂi:c’vm.{ Lontedicks e | — Lo L T o el

b?‘kﬁdl\-\q o'CT/. /(L\EI'Q'L"Q v bp‘\-vxc\. V| \3 Waore e,f“\"'j - ¢ 51

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F', then adding ¢4, ¢, as children to o

53

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

Ot e\

54

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

55

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

56

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

-\ . (A0
o Corddadich> /s B

