CS4102 Algorithms Spring 2020

Warm up

Decode the line below into English

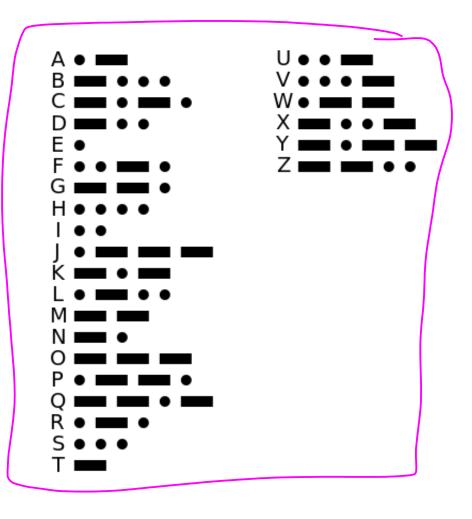
(hint: use Google or Wolfram Alpha)

CS4102 Algorithms Spring 2020

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)



Today's Keywords

- Greedy Algorithms
- Exchange Argument
- Choice Function
- Prefix-free code
- Compression
- Huffman Code

CLRS Readings

• Chapter 16

Homeworks

- HW6 Due Sunday, April 5 @ 11pm
 - Written (use latex)
 - DP and Greedy
- EC1 optional homework
 No office hours for that assignment
- HW4 grades coming later this week

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Exchange argument

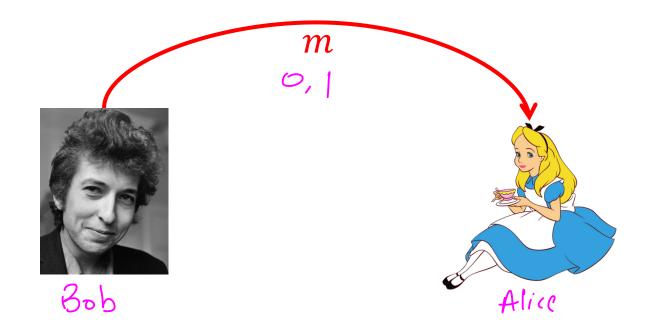
- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Sam Morse

 Engineer and artist

Message Encoding

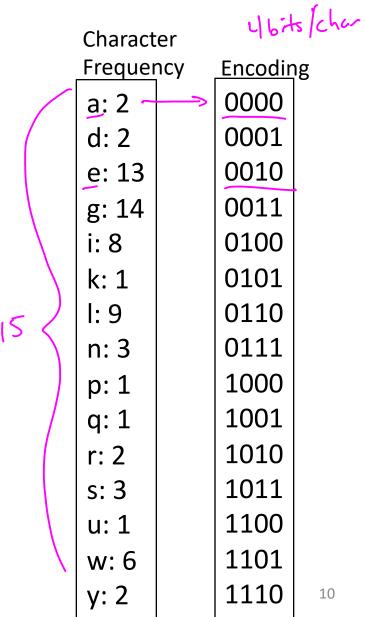
- Problem: need to electronically send a message to two people at a distance.
- Channel for message is binary (either on or off)



How can we do it?

wiggle, wiggle, wiggle like a gypsy queen wiggle, wiggle, wiggle all dressed in green

 Take the message, send it over character-by-character with an encoding



How efficient is this?

Each character requires 4 bits

 $\ell_c = 4$

Cost of encoding:

$$\underbrace{B(\underline{T}, \{\underline{f_c}\})}_{character c} = 68 \cdot 4 = 272$$

Character	
Frequency	Encoding
a: 2	0000
d: 2	0001
e: <u>13</u>	0010
g: 14	0011
i: 8	0100
k: 1	0101
l: 9	0110
n: 3	0111
p: 1	1000
q: 1	1001
r: 2	1010
s: 3	1011
u: 1	1100
w: 6	1101
y: 2	1110
	1 1

11

How efficient is this?

 $\ell_c = 4$

wiggle wiggle wiggle like a gypsy queen wiggle wiggle wiggle all dressed in green

Each character requires 4 bits

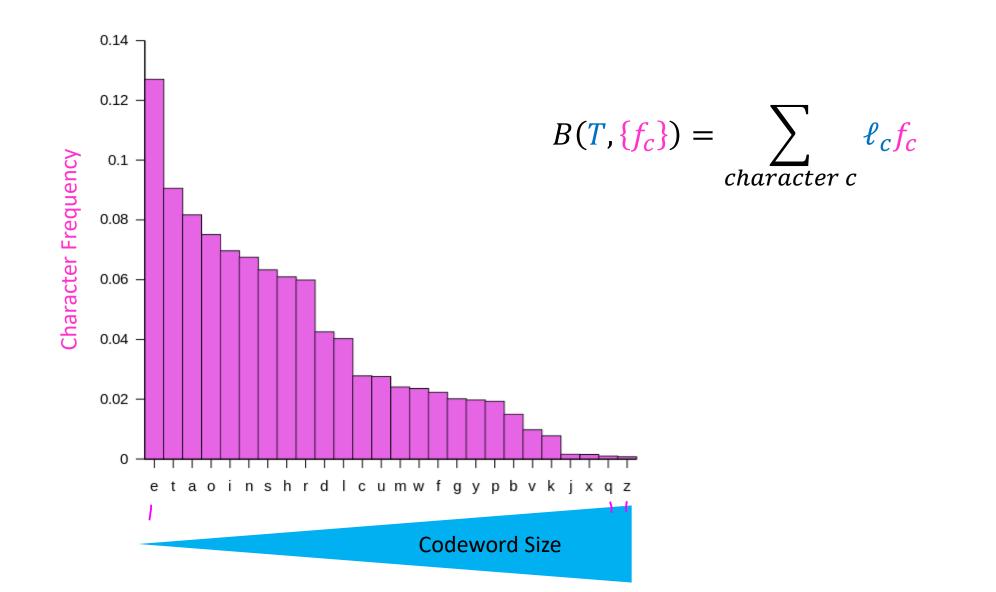
Cost of encoding: $B(T, \{f_c\}) = \sum_{character c} \ell_c f_c = 68 \cdot 4 = 272$

Better Solution: Allow for different characters to have different-size encodings (high frequency \rightarrow short code)

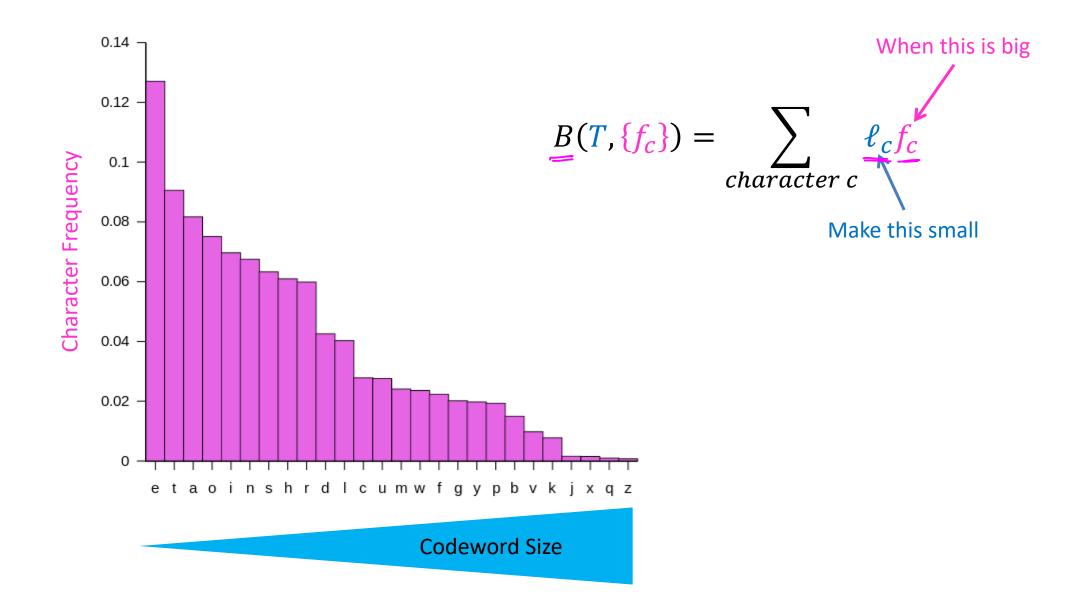
Character	
Frequency	Encoding
a: 2	0000
d: 2	0001
e: <u>13</u>	0010
g: <u>1</u> 4	0011
i: 8	0100
k: 1	0101
l: 9	0110
n: 3	0111
p: 1	1000
q: 1	1001
r: 2	1010
s: 3	1011
u: 1	1100
w: 6	1101
y: 2	1110

12

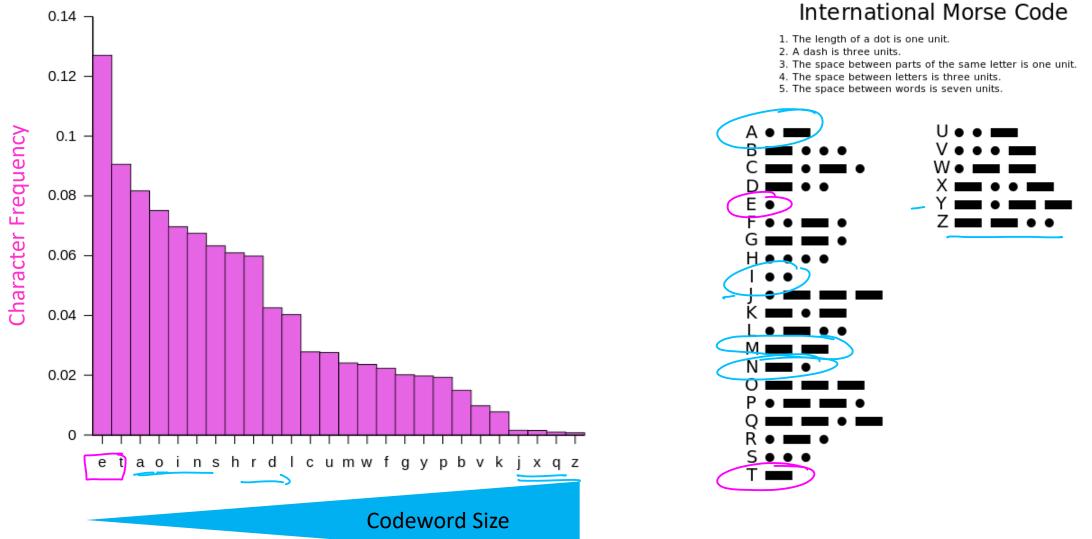
More efficient coding



More efficient coding



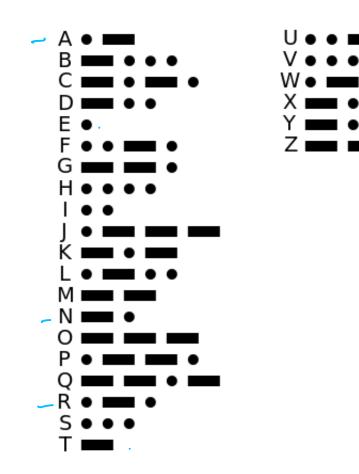
Morse Code

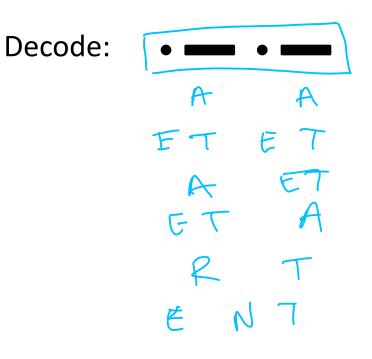


Problem with Morse Code

International Morse Code

- The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

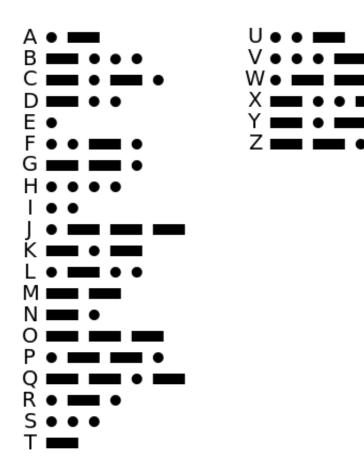


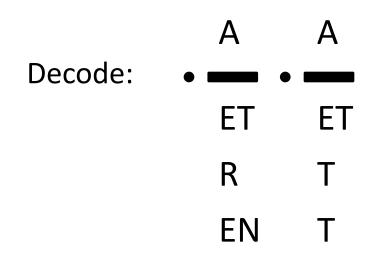


Problem with Morse Code

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

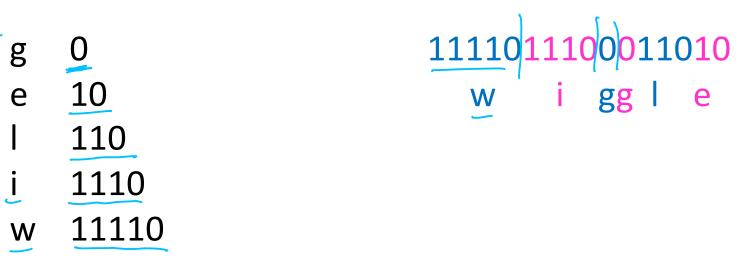




Ambiguous Decoding

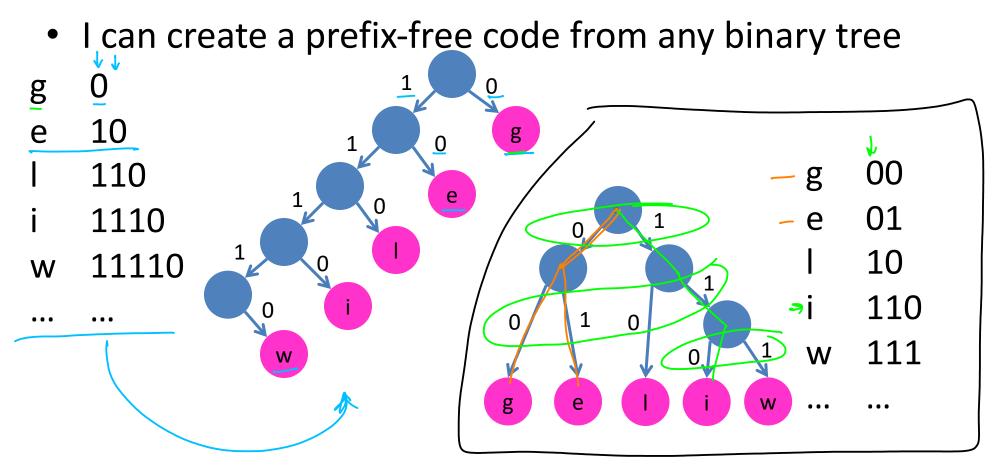
Prefix-Free Code

• A prefix-free code is codeword table T such that for any two characters c_1, c_2 , if $c_1 \neq c_2$ then $code(c_1)$ is not a prefix of $code(c_2)$



Binary Trees = Prefix-free Codes

• I can represent any prefix-free code as a binary tree



Goal: Shortest Prefix-Free Encoding

- Input: A set of character frequencies $\{f_c\}$
- Output: A prefix-free code *T* which minimizes

$$\underline{B}(T, \{f_c\}) = \sum_{character c} \underline{\ell_c f_c}$$

Goal: Shortest Prefix-Free Encoding

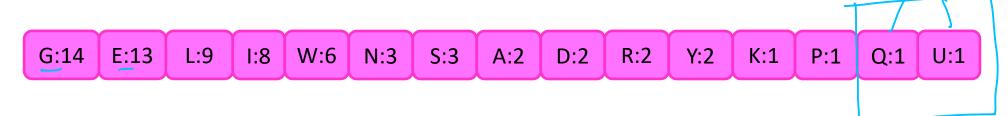
- Input: A set of character frequencies $\{f_c\}$
- Output: A prefix-free code *T* which minimizes

$$B(T, \{f_c\}) = \sum_{character c} \ell_c f_c$$

Greedy Algorithms

- Require Optimal Substructure
 Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - Identify a greedy choice property 1.
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Greedy choice Proceedy
Choose the least frequent pair, combine into a subtree



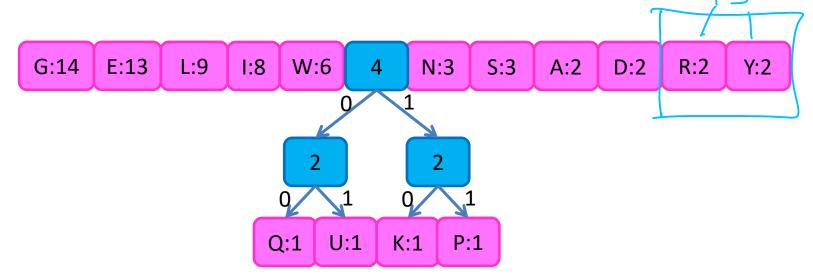
 Choose the least frequent pair, combine into a subtree

Subproblem of size n - 1!

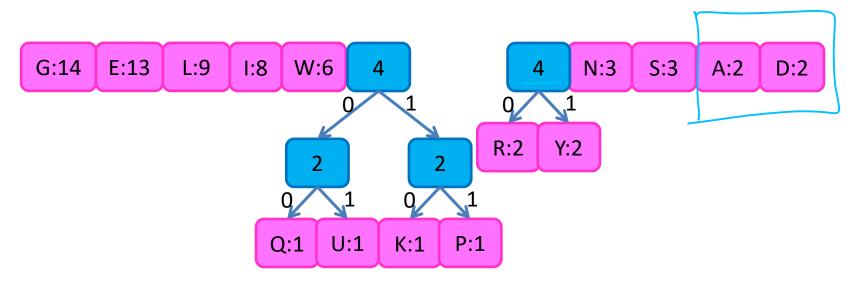
2

• Choose the least frequent pair, combine into a subtree G:14 E:13 L:9 1:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 2 2 Q:1 U:1 K:1 P:1

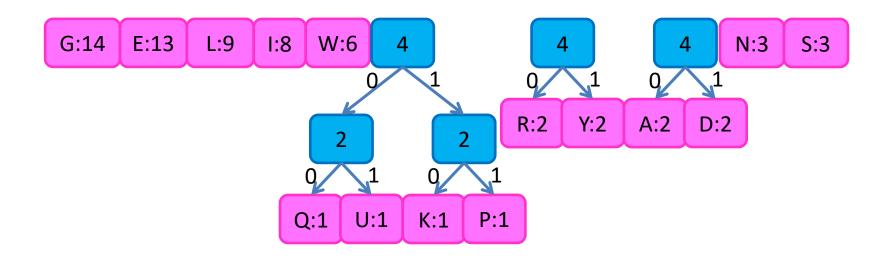
 Choose the least frequent pair, combine into a subtree



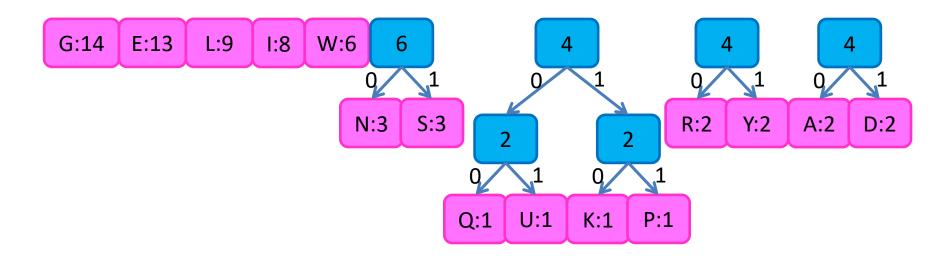
• Choose the least frequent pair, combine into a subtree

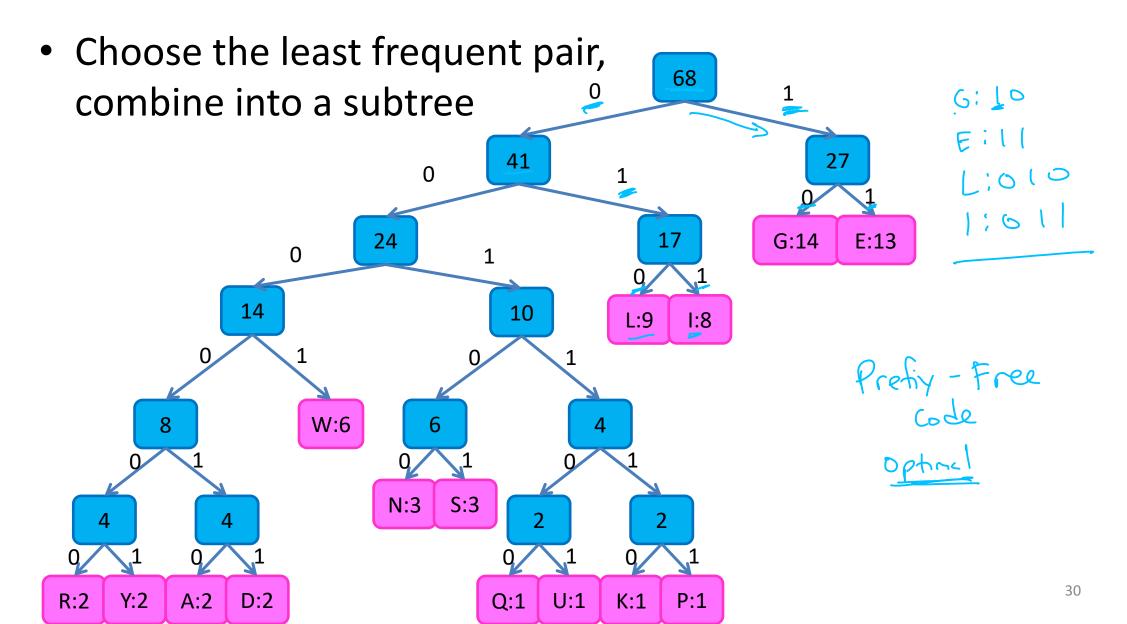


• Choose the least frequent pair, combine into a subtree



• Choose the least frequent pair, combine into a subtree





Exchange argument

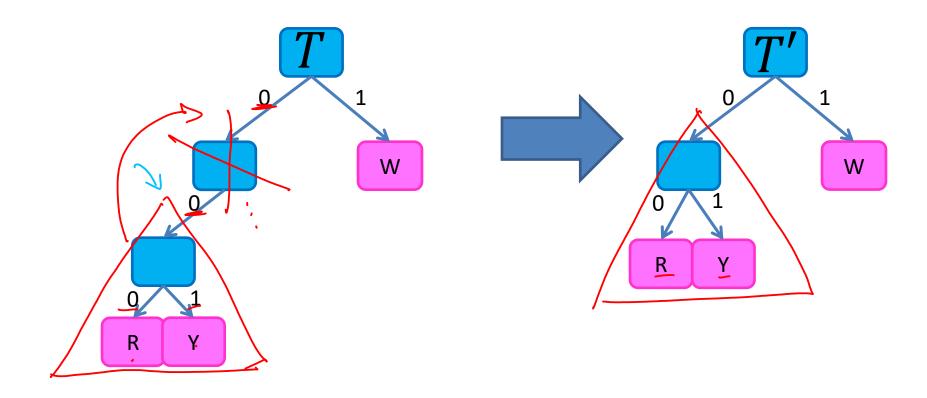
- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Showing Huffman is Optimal

- Overview:
 - Show that there is an optimal tree in which the least frequent characters are siblings Greedy Chaie Property
 - Exchange argument
 - Show that making them siblings and solving the new smaller subproblem results in an optimal solution
 - Proof by contradiction
 - size n-l

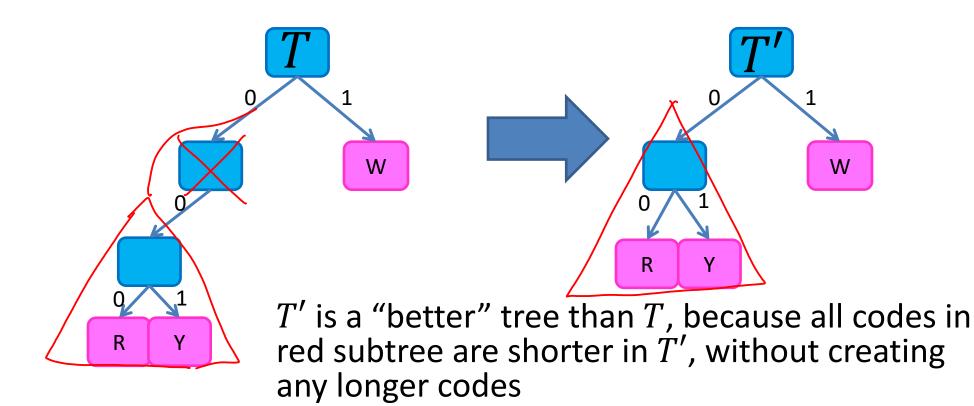
Showing Huffman is Optimal

 First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)



Showing Huffman is Optimal

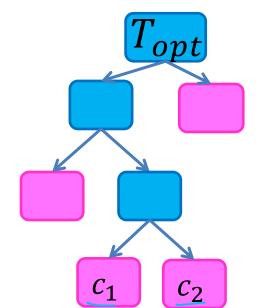
• First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)



Huffman Exchange Argument

- Claim: if c₁, c₂ are the least-frequent characters, then there is an optimal prefix-free code s.t. c₁, c₂ are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

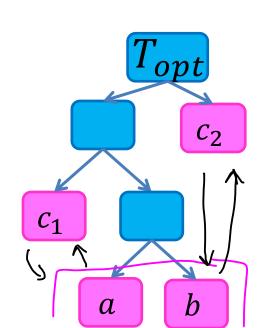
Case 1: Consider some optimal tree T_{opt} . If c_1, c_2 are siblings in this tree, then claim holds



Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1 , c_2 are not siblings



Let <u>a, b</u> be the two characters of lowest depth that are siblings (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Why must they exist?) - full free $O \text{ or } \underline{2}$ children (Hor or $\underline{2}$ children

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

$$B(T_{opt}) = \underline{C} + f_{c1}\ell_{c1} + f_a\ell_a$$

opt

 C_2

h

a

C= cost to encode all ercept c, 1ª.

Show
$$B(Top_T) \ge B(T')$$

 $B(Top_T) - B(T') \ge 0$
 T' is optimal

$$f(t) = C + f_{c1}\ell_a + f_a\ell_{c1}$$

$$T$$

$$C_2$$

$$C_1$$

$$b$$

$$T$$

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

$$B(T_{opt}) = C + f_{c1}\ell_{c1} + f_{a}\ell_{a} \qquad B(T') = C + f_{c1}\ell_{a} + f_{a}\ell_{c1} B(T_{opt}) - B(T') = C + f_{c1}l_{c1} + f_{a}l_{a} - (C + f_{c1}l_{a} + f_{a}l_{c1}) = C + f_{c1}l_{c1} + f_{a}l_{a} - (C + f_{c1}l_{a} + f_{a}l_{c1}) = C + f_{c1}l_{c1} + f_{a}l_{a} - (C + f_{c1}l_{a} + f_{a}l_{c1}) = f_{c1}l_{c1} + f_{a}l_{a} - (C + f_{c1}l_{a} - f_{a}l_{c1}) = f_{c1}l_{c1} + f_{a}l_{a} - (C + f_{c1}l_{a} - f_{a}l_{c1}) = f_{c1}l_{c1} + f_{a}l_{a} - (C + f_{c1}l_{a} - f_{a}l_{c1}) = f_{c1}(l_{c1} - l_{a}) + f_{a}(l_{a} - l_{c1}) = -f_{c1}(-l_{c1} + l_{a}) + f_{c}(l_{a} - l_{c1}) = (f_{a} - f_{c1})(l_{a} - l_{c1}) \ge 0$$

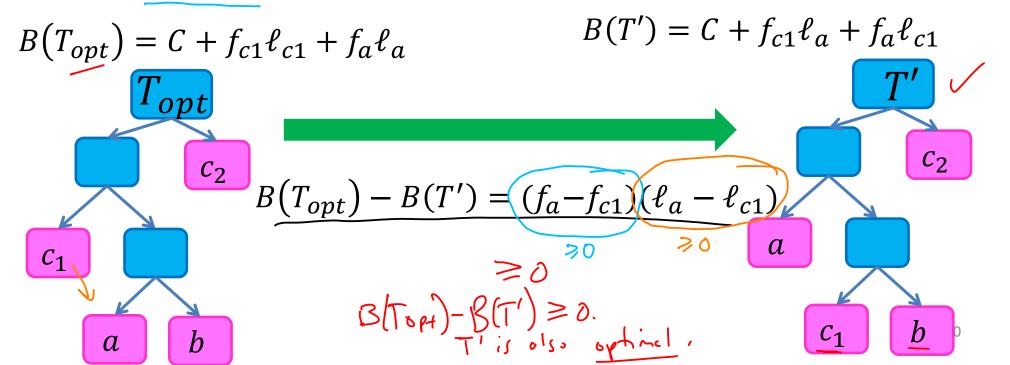
38

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

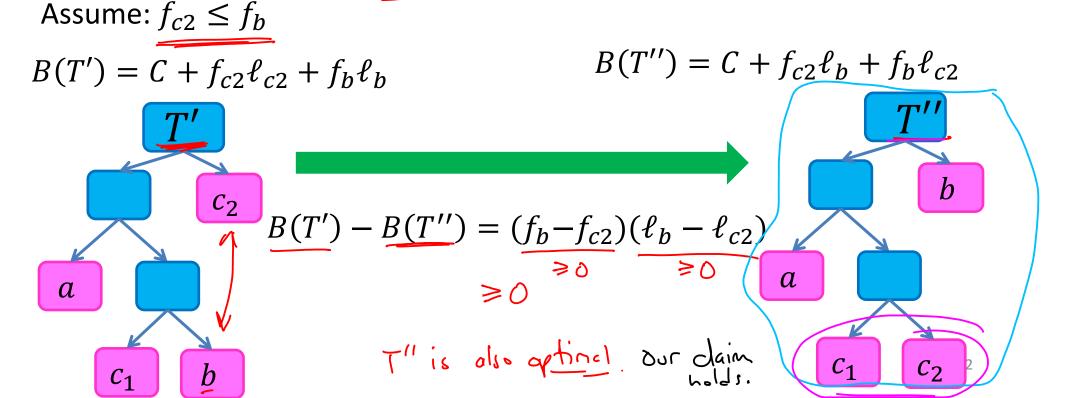


Case 2:Repeat to swap $c_2, b!$

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_2 with b does not increase cost of the tree.

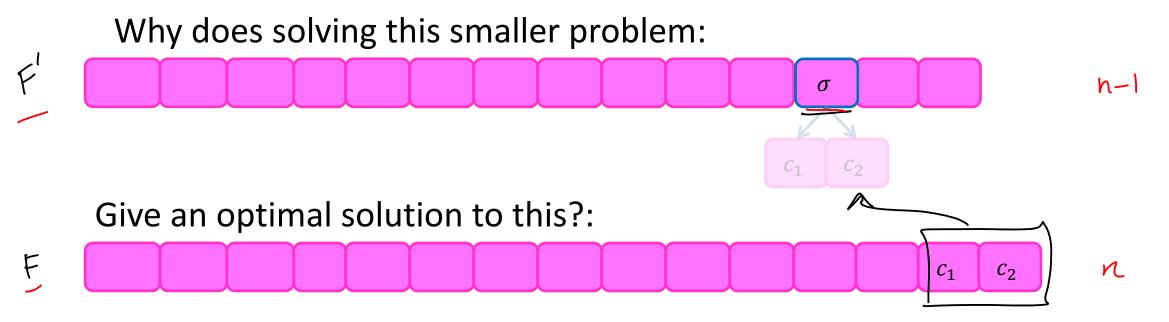


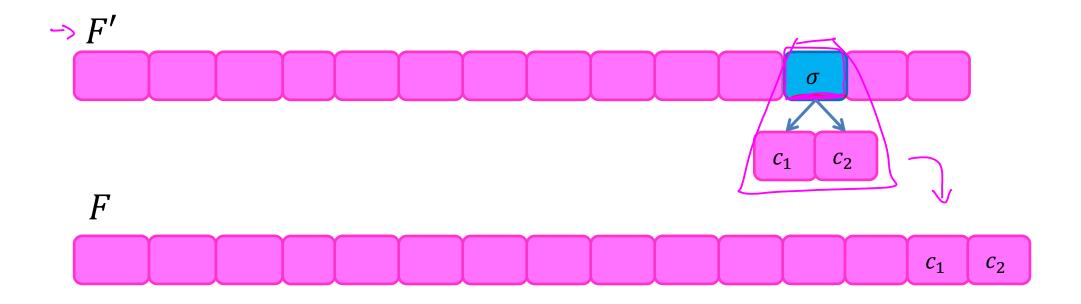
Showing Huffman is Optimal

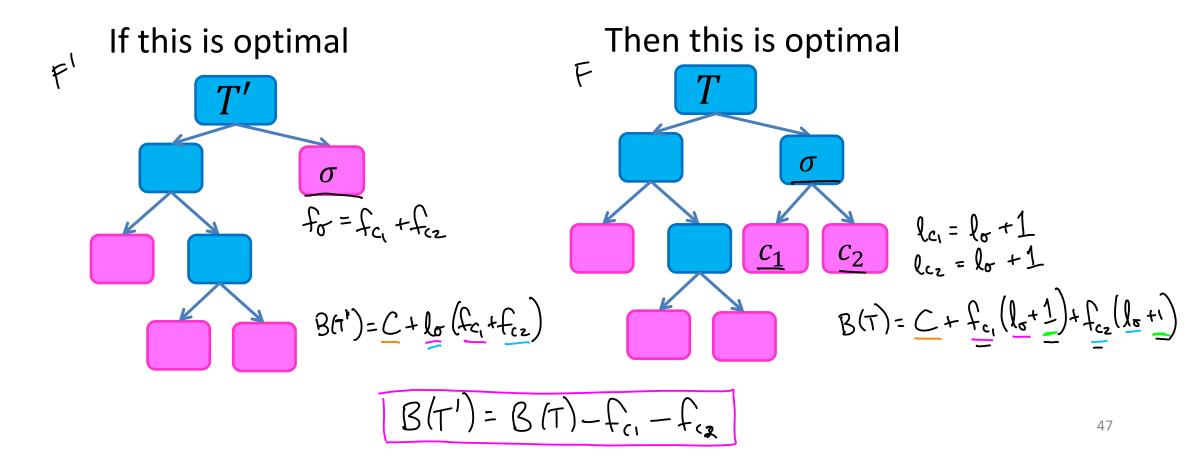
- Overview:
 - Show that there is an optimal tree in which the least frequent characters are siblings greedy duite property works
 - Exchange argument
 - Show that making them siblings and solving the new smaller subproblem results in an optimal solution - optimal substructive works
 - Proof by contradiction

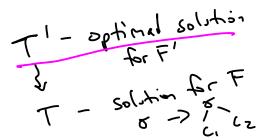
Finishing the Proof

- Show Optimal Substructure
 - Show treating c_1, c_2 as a new "combined" character gives optimal solution

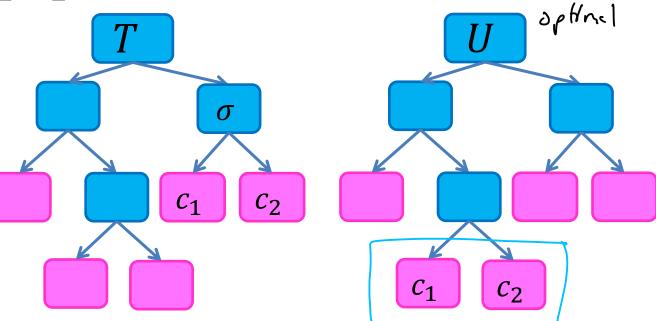


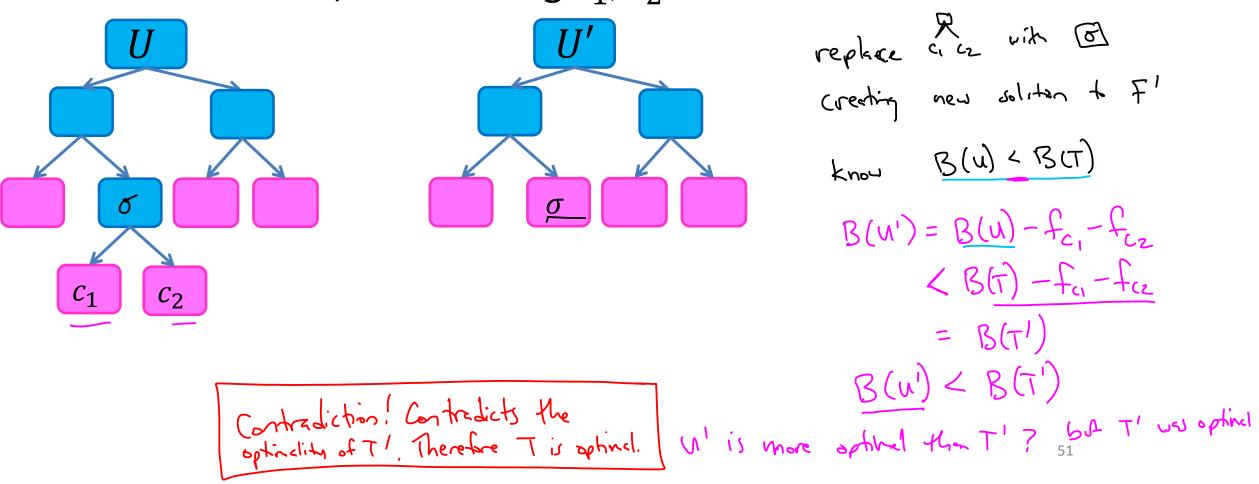


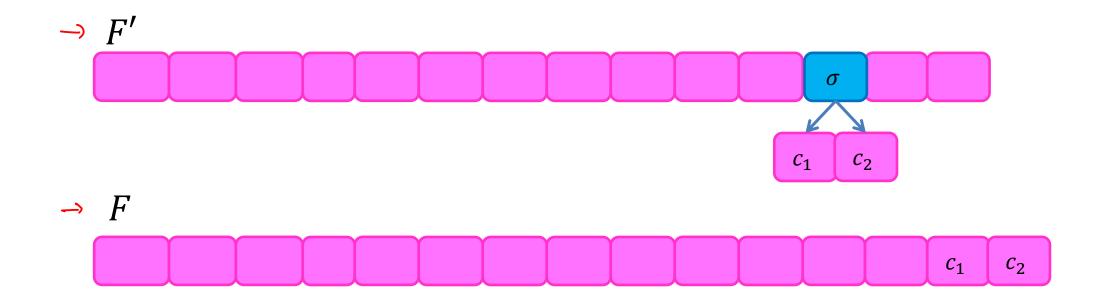


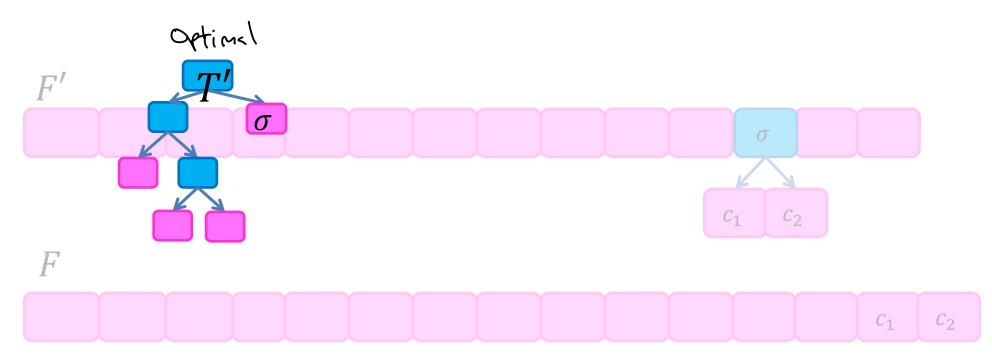


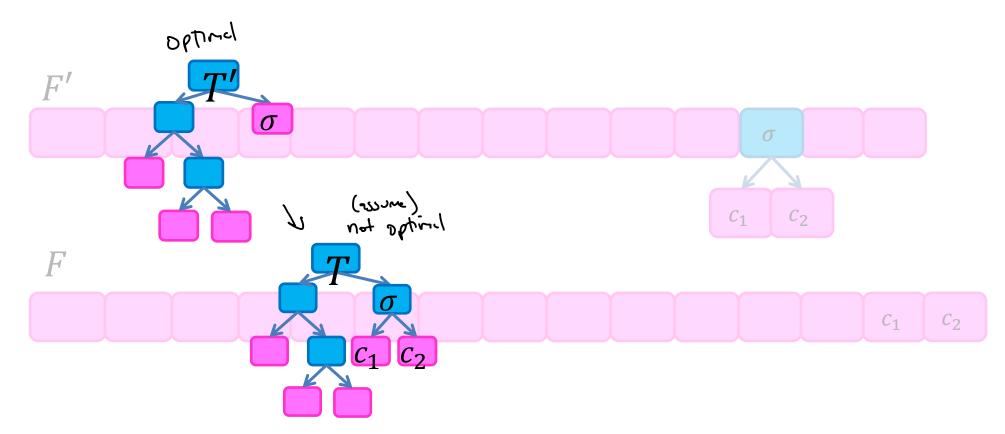
Suppose toward a contradiction, that T is not optimal. Then Let U be a lower-cost free (U is optimal for F) R(v) < B(T)



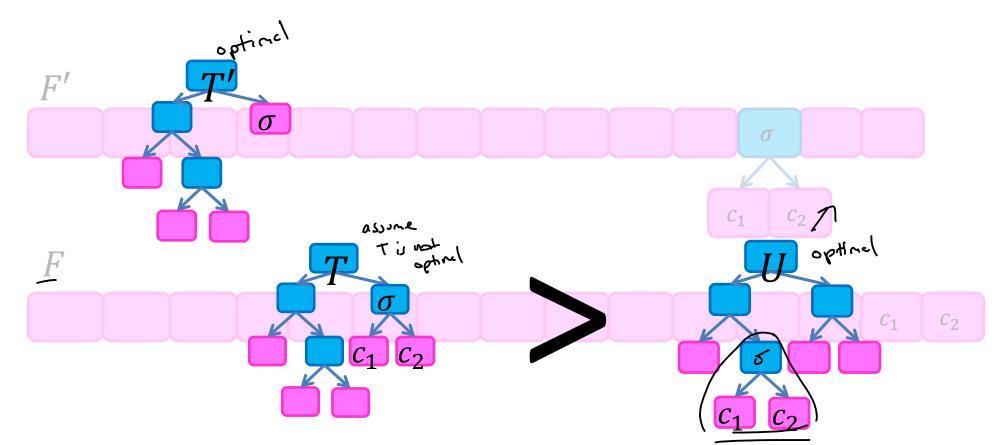








• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ



56

