
Spring 2020

1

Today’s Keywords
• Greedy Algorithms
• Choice Function
• Cache Replacement
• Hardware & Algorithms
CLRS Reading: Chapter 16

Caching Problem

• Why is using too much memory a bad thing?

3

Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics
– Physics
– Economics
– Computer Science

4

Von Neumann Bottleneck

• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time, more memory is a

lot more time

5

CPU,
registers

Cache
Disk

If not look here

Hopefully your
data in here

Hope it’s not here

Access time:
1 cycle

Access time:
10 cycles

Access time:
1,000,000 cycles

Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate

something already there
• We want the best cache “schedule” to minimize the number of

misses

6

Caching Problem Definition

• Input:
– 𝑘 = size of the cache
–𝑀 = 𝑚%,𝑚', …𝑚) = memory access pattern

• Output:
– “schedule” for the cache (list of items in the cache at each time)

which minimizes cache fetches

7

Example

8

A B C D A D E A D B A E C E A

A

B

C

Example

9

A B C D A D E A D B A E C E A

A

B

C

A

B

C

Example

10

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

Example

11

A B C D A D E A D B A E C E A

A

B

C

We must evict
something to make
room for D

A

B

C

A

B

C

A

B

C

Example

12

A B C D A D E A D B A E C E A

D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C

Example

13

A B C D A D E A D B A E C E A

A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C

Our Problem vs Reality

• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)

14

Our Problem vs Reality

• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)

15

A B C D A D E A D B A E C E A

A B C D A D E A D B A E C E A

A
B
C

A
B
C

A
B
C

A
B
C

D
B
C

D
B
C

A
B
C

A
B
C

Unreduced

Reduced

Our Problem vs Reality

• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)

16

A B C D A D E A D B A E C E A

A B C D A D E A D B A E C E A

A
B
C

A
B
C

A
B
C

A
B
C

D
B
C

D
B
C

A
B
C

A
B
C

Unreduced

Reduced
Leaving A in longer does
not save fetches

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

17

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

18

A B C D A D E A D B A E C E A

A

B

C Evict C

A

B

C

A

B

C

A

B

C

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

19

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

B

D Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

20

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

D Evict D

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

21

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

B Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

22

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

C

A

E

C

A

E

C

4 Cache Misses

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

23

Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses
For each 𝑚. ∈ 𝑀:

if 𝑚. ∈ 𝑐𝑎𝑐ℎ𝑒:
print 𝑐𝑎𝑐ℎ𝑒

else:
𝑚 = furthest-in-future from cache
evict 𝑚, load 𝑚.

print 𝑐𝑎𝑐ℎ𝑒

24

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

25

Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))

26

Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))

27

𝑆∗

Agrees with
𝑆11 on first 0
accesses

Optimal

Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))

28

𝑆∗

Agrees with
𝑆11 on first 0
accesses

𝑆11
Agrees with
𝑆11 on all 𝑛
accesses

Optimal Greedy

Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))

29

𝑆∗

Agrees with
𝑆11 on first 0
accesses

𝑆%
Agrees with
𝑆11 on first
access

𝑆11
Agrees with
𝑆11 on all 𝑛
accesses

Lemma
Optimal Greedy

Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))

30

𝑆∗

Agrees with
𝑆11 on first 0
accesses

𝑆% 𝑆'
Agrees with
𝑆11 on first
access

Agrees with
𝑆11 on first 2
accesses

𝑆11
Agrees with
𝑆11 on all 𝑛
accesses

Lemma Lemma
Optimal Greedy

Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))

31

𝑆∗

Agrees with
𝑆11 on first 0
accesses

𝑆% 𝑆'
Agrees with
𝑆11 on first
access

Agrees with
𝑆11 on first 2
accesses

… 𝑆11
Agrees with
𝑆11 on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy

Belady Exchange Proof Idea

32

𝑆.

𝑆11

𝑆.3%

First 𝑖 accesses

Belady Exchange Proof Idea

33

𝑆.

𝑆11

𝑆.3%

First 𝑖 accesses

Must agree with 𝑆11

Need to fill in the rest
of 𝑆.3% to have no

more misses than 𝑆.

𝑆. Cache after 𝑖

Proof of Lemma

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

Since 𝑆. agrees with 𝑆11 for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

34

𝑆11 Cache after 𝑖=
Consider access 𝑚.3% = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆. nor 𝑆11
evict from the cache, use the same cache for 𝑆.3%

𝑓𝑒 𝑓𝑒

𝑆.3% Cache after 𝑖 𝑓𝑒

𝑑 𝑑

𝑑

𝑆. Cache after 𝑖

Proof of Lemma

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

Since 𝑆. agrees with 𝑆11 for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

35

𝑆11 Cache after 𝑖=
Consider access 𝑚.3% = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆. and
𝑆11 evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆.3%

𝑆.3% Cache after 𝑖 𝑑𝑒

𝑆. Cache after 𝑖

Proof of Lemma

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

Since 𝑆. agrees with 𝑆11 for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

36

𝑆11 Cache after 𝑖=
Consider access 𝑚.3% = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆. evicts 𝑒 and 𝑆11
evicts 𝑓 from the cache

𝑆. Cache after 𝑖 + 1 𝑆11 Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒

Case 3

37

𝑆.

𝑆11

𝑆.3%

First 𝑖 accesses

Case 3

38

𝑆.

𝑆11

𝑆.3%

First 𝑖 accesses

Must agree with 𝑆11

Need to fill in the rest
of 𝑆.3% to have no

more misses than 𝑆.

Case 3

39

𝑆.

𝑆11

𝑆.3% 𝑚?

First 𝑖 accesses

First place 𝑆. involves 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇

Case 3, 𝑚? = 𝑒

40

𝑆.

𝑆11

𝑆.3% 𝑒

First 𝑖 accesses

First place 𝑆. uses 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇

Case 3, 𝑚? = 𝑒

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

41

𝑆. Cache after 𝑡 − 1 𝑆.3% Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆. must load 𝑒 into
the cache, assume it
evicts 𝑥

𝑥 𝑥

Case 3, 𝑚? = 𝑒

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

42

𝑆. Cache after 𝑡 − 1 𝑆.3% Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆. must load 𝑒 into
the cache, assume it
evicts 𝑥

𝑆.3% will load 𝑓 into
the cache, evicting 𝑥

𝑆.3% behaved exactly the same as 𝑆. between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

The caches now match!

𝑥 𝑥

𝑒 𝑓

Case 3, 𝑚? = 𝑓

43

𝑆.

𝑆11

𝑆.3% 𝑓

First 𝑖 accesses

First place 𝑆. uses 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇

Case 3, 𝑚? = 𝑓

Cannot Happen!

44

𝑆.

𝑆11

𝑆.3% 𝑓

First place 𝑆. uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!

Case 3, 𝑚? = 𝑥 ≠ 𝑒, 𝑓

45

𝑆.

𝑆11

𝑆.3% 𝑥

First 𝑖 accesses

First place 𝑆. uses 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇

Case 3, 𝑚? = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

46

𝑆. Cache after 𝑡 − 1 𝑆.3% Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆. loads 𝑥 into the
cache, it must be
evicting 𝑓

Case 3, 𝑚? = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

47

𝑆. Cache after 𝑡 − 1 𝑆.3% Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆. loads 𝑥 into the
cache, it must be
evicting 𝑓

𝑆.3% will load 𝑥 into
the cache, evicting 𝑒

𝑆.3% behaved exactly the same as 𝑆. between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

𝑥 𝑥

The caches now match!

Use Lemma to show Optimality

48

𝑆∗

Agrees with
𝑆11 on first 0
accesses

𝑆% 𝑆'
Agrees with
𝑆11 on first
access

Agrees with
𝑆11 on first 2
accesses

… 𝑆11
Agrees with
𝑆11 on all 𝑛
accesses

Lemma Lemma Lemma Lemma

