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Caching Problem

• Why is using too much memory a bad thing?
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Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics 
– Physics
– Economics 
– Computer Science
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Von Neumann Bottleneck

• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time, more memory is a 

lot more time
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Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate 

something already there
• We want the best cache “schedule” to minimize the number of 

misses
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Caching Problem Definition

• Input: 
– 𝑘 = size of the cache
–𝑀 = 𝑚%,𝑚', …𝑚) = memory access pattern

• Output: 
– “schedule” for the cache (list of items in the cache at each time) 

which minimizes cache fetches
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Example
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Example
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Example
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Our Problem vs Reality

• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

21

A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

B Evict B



Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses
For each 𝑚. ∈ 𝑀:

if 𝑚. ∈ 𝑐𝑎𝑐ℎ𝑒:
print 𝑐𝑎𝑐ℎ𝑒

else:
𝑚 = furthest-in-future from cache
evict 𝑚, load 𝑚.

print 𝑐𝑎𝑐ℎ𝑒
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Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”
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Belady Exchange Lemma

Let 𝑆11 be the schedule chosen by our greedy algorithm

Let 𝑆. be a schedule which agrees with 𝑆11 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆.3% which agrees with 𝑆11 for the first 
𝑖 + 1 memory accesses, and has no more misses than 𝑆.
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.))
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Belady Exchange Proof Idea
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Belady Exchange Proof Idea
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𝑆.

𝑆11

𝑆.3%
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Need to fill in the rest 
of 𝑆.3% to have no 
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𝑆. Cache after 𝑖

Proof of Lemma

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

Since 𝑆. agrees with 𝑆11 for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆11 Cache after 𝑖=
Consider access 𝑚.3% = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆. nor 𝑆11
evict from the cache, use the same cache for 𝑆.3%

𝑓𝑒 𝑓𝑒
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𝑑 𝑑

𝑑



𝑆. Cache after 𝑖

Proof of Lemma

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

Since 𝑆. agrees with 𝑆11 for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same

35

𝑆11 Cache after 𝑖=
Consider access 𝑚.3% = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆. and 
𝑆11 evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆.3%
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𝑆11 Cache after 𝑖=
Consider access 𝑚.3% = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆. evicts 𝑒 and 𝑆11
evicts 𝑓 from the cache

𝑆. Cache after 𝑖 + 1 𝑆11 Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒



Case 3
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Case 3
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Case 3
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𝑆.

𝑆11

𝑆.3% 𝑚?

First 𝑖 accesses

First place 𝑆. involves 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇



Case 3, 𝑚? = 𝑒
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𝑆.

𝑆11

𝑆.3% 𝑒

First 𝑖 accesses

First place 𝑆. uses 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇



Case 3, 𝑚? = 𝑒

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)
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𝑆. Cache after 𝑡 − 1 𝑆.3% Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆. must load 𝑒 into 
the cache, assume it 
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Case 3, 𝑚? = 𝑒

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)
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𝑆. Cache after 𝑡 − 1 𝑆.3% Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆. must load 𝑒 into 
the cache, assume it 
evicts 𝑥

𝑆.3% will load 𝑓 into 
the cache, evicting 𝑥

𝑆.3% behaved exactly the same as 𝑆. between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

The caches now match!

𝑥 𝑥

𝑒 𝑓



Case 3, 𝑚? = 𝑓
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𝑆.

𝑆11

𝑆.3% 𝑓

First 𝑖 accesses

First place 𝑆. uses 𝑒 or 𝑓

Copy 𝑆.

𝑚? = the first access after 𝑖 + 1 in which 𝑆. deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆,𝒇



Case 3, 𝑚? = 𝑓

Cannot Happen!

44

𝑆.

𝑆11

𝑆.3% 𝑓

First place 𝑆. uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!



Case 3, 𝑚? = 𝑥 ≠ 𝑒, 𝑓
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Case 3, 𝑚? = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)
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Case 3, 𝑚? = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆.3% s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)
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𝑆.3% will load 𝑥 into 
the cache, evicting 𝑒

𝑆.3% behaved exactly the same as 𝑆. between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆.3% = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆.)

𝑥 𝑥

The caches now match!



Use Lemma to show Optimality
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