## CS4102 Algorithms

Spring 2020

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware \& Algorithms

CLRS Reading: Chapter 16

## Caching Problem

- Why is using too much memory a bad thing?


## Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
- Mathematics
- Physics
- Economics
- Computer Science



## Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Hopefully your data in here

CPU, registers

If not look here

Access time:
1 cycle


Access time: 10 cycles


## Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses


## Caching Problem Definition

- Input:
$-k=$ size of the cache
$-M=\left[m_{1}, m_{2}, \ldots m_{n}\right]=$ memory access pattern
- Output:
- "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches


## Example

## Example



## Example



## Example



## Example



## Example



## Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting \# of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
- Reduced == Unreduced (by number of fetches)


## Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting \# of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
- Reduced == Unreduced (by number of fetches)


Reduced DA D EA D B A EC EA

## Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting \# of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
- Reduced == Unreduced (by number of fetches)



## Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

## Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future


Evict C


## Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future



## Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

| $A$ | $A$ | $A$ |
| :--- | :--- | :--- |
| $B$ | $B$ | $B$ |
| $C$ | $C$ | $C$ |
|  |  |  |



A BCDAD EAD BAECEA
Evict D
A

## Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future


Evict B

## Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future


4 Cache Misses

## Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

## Caching Greedy Algorithm

Initialize cache $=$ first k accesses
For each $m_{i} \in M$ :
if $m_{i} \in$ cache: print cache
else:
$m=$ furthest-in-future from cache
evict $m$, load $m_{i}$
print cache

## Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"



## Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let $S_{i}$ be a schedule which agrees with $S_{f f}$ for the first $i$ memory accesses. We will show: there is a schedule $S_{i+1}$ which agrees with $S_{f f}$ for the first $i+1$ memory accesses, and has no more misses than $S_{i}$ (i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$ )

## Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let $S_{i}$ be a schedule which agrees with $S_{f f}$ for the first $i$ memory accesses.
We will show: there is a schedule $S_{i+1}$ which agrees with $S_{f f}$ for the first
$i+1$ memory accesses, and has no more misses than $S_{i}$
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$ )


Agrees with

## Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let $S_{i}$ be a schedule which agrees with $S_{f f}$ for the first $i$ memory accesses.
We will show: there is a schedule $S_{i+1}$ which agrees with $S_{f f}$ for the first
$i+1$ memory accesses, and has no more misses than $S_{i}$
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$ )


Agrees with $S_{f f}$ on first 0 accesses


Agrees with $S_{f f}$ on all $n$ accesses

## Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let $S_{i}$ be a schedule which agrees with $S_{f f}$ for the first $i$ memory accesses.
We will show: there is a schedule $S_{i+1}$ which agrees with $S_{f f}$ for the first $i+1$ memory accesses, and has no more misses than $S_{i}$
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$ )



Agrees with $S_{f f}$ on all $n$ accesses

## Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let $S_{i}$ be a schedule which agrees with $S_{f f}$ for the first $i$ memory accesses.
We will show: there is a schedule $S_{i+1}$ which agrees with $S_{f f}$ for the first $i+1$ memory accesses, and has no more misses than $S_{i}$
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$ )


## Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm
Let $S_{i}$ be a schedule which agrees with $S_{f f}$ for the first $i$ memory accesses.
We will show: there is a schedule $S_{i+1}$ which agrees with $S_{f f}$ for the first $i+1$ memory accesses, and has no more misses than $S_{i}$
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$ )


## Belady Exchange Proof Idea

First $i$ accesses

## 




## Belady Exchange Proof Idea

First $i$ accesses


Must agree with $S_{f f}$


## Proof of Lemma

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since $S_{i}$ agrees with $S_{f f}$ for the first $i$ accesses, the state of the cache at access $i+1$ will be the same


Consider access $m_{i+1}=d$
Case 1: if $d$ is in the cache, then neither $S_{i}$ nor $S_{f f}$ evict from the cache, use the same cache for $S_{i+1}$


## Proof of Lemma

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since $S_{i}$ agrees with $S_{f f}$ for the first $i$ accesses, the state of the cache at access $i+1$ will be the same


Consider access $m_{i+1}=d$
Case 2: if $d$ isn't in the cache, and both $S_{i}$ and $S_{f f}$ evict $f$ from the cache, evict $f$ for $d$ in $S_{i+1}$


## Proof of Lemma

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since $S_{i}$ agrees with $S_{f f}$ for the first $i$ accesses, the state of the cache at access $i+1$ will be the same


Consider access $m_{i+1}=d$
Case 3: if $d$ isn't in the cache, $S_{i}$ evicts $e$ and $S_{f f}$ evicts $f$ from the cache


## Case 3

First $i$ accesses

## "Tーロana


st

## Case 3



## $$
=
$$ <br> Must agree with $S_{f f}$

## Case 3


$m_{t}=$ the first access after $i+1$ in which $S_{i}$ deals with $e$ or $f$ 3 options: $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

## Case $3, m_{t}=e$


$m_{t}=$ the first access after $i+1$ in which $S_{i}$ deals with $e$ or $f$
3 options: $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $m_{t}=f$ or $m_{t}=x \neq e, f$

## Case 3, $m_{t}=e$

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

$S_{i}$ must load $e$ into the cache, assume it evicts $x$

## Case 3, $m_{t}=e$

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

$S_{i}$ must load $e$ into the cache, assume it

$S_{i+1}$ will load $f$ into the cache, evicting $x$ evicts $x$

The caches now match!
$S_{i+1}$ behaved exactly the same as $S_{i}$ between $i$ and $t$, and has the same cache after $t$, therefore misses $\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Case $3, m_{t}=f$

$m_{t}=$ the first access after $i+1$ in which $S_{i}$ deals with $e$ or $f$ 3 options: $m_{t}=e$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $m_{t}=x \neq e, f$

Case $3, m_{t}=f$
Cannot Happen!


Case 3, $m_{t}=x \neq e, f$

$m_{t}=$ the first access after $i+1$ in which $S_{i}$ deals with $e$ or $f$ 3 options: $m_{t}=e$ or $m_{t}=f$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

## Case 3, $m_{t}=x \neq e, f$

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

$S_{i}$ loads $x$ into the
cache, it must be evicting $f$

## Case 3, $m_{t}=x \neq e, f$

Goal: find $S_{i+1}$ s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

$S_{i}$ loads $x$ into the cache, it must be

$S_{i+1}$ will load $x$ into the cache, evicting $e$ evicting $f$

The caches now match!
$S_{i+1}$ behaved exactly the same as $S_{i}$ between $i$ and $t$, and has the same cache after $t$, therefore $\operatorname{misses}\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

## Use Lemma to show Optimality

Semma

| Agrees with |
| :--- |
| $S_{f f}$ on first 0 |
| accesses |


| Agrees with |
| :--- |
| $S_{f f}$ on first |
| access |


| Agrees with |
| :--- |
| $S_{f f}$ on first 2 |
| accesses |

Agrees with
$S_{f f}$

