CS4102 Algorithms

Spring 2020

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware & Algorithms

CLRS Reading: Chapter 16

Caching Problem

time complexity

Space complexity

- Why is using too much memory a bad thing?
 - memory can be expensive
 - using too much very forces us to use slower menong
 - time > memory

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory

Takeaway for Algorithms: Memory is time, more memory is a

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

• Input:

- -k =size of the cache
- $-M = [m_1, m_2, ... m_n] =$ memory access pattern

• Output:

"schedule" for the cache (list of items in the cache at each time)
 which minimizes cache fetches

K=3

Our Problem vs Reality

- Assuming we know the entire access pattern
- · Cache is Fully Associative any nevery address on so onywhere in the cache.
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of fetches)

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of fetches)

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of fetches)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

4 Cache Misses 4

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
()(K)
Initialize cache= first k accesses
For each m_i \in M:
     if m_i \in cache:
                                      0(k)
           print cache
     else:
           m = furthest-in-future from cache
           evict m, load m_i
           print cache
```

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

```
Let S_{ff} be the schedule chosen by our greedy algorithm—accessed further in the Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i (i.e. misses(S_{i+1}) \leq misses(S_i))
```

```
Let S_{ff} be the schedule chosen by our greedy algorithm
Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses.
We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first
       i+1 memory accesses, and has no more misses than S_i
       (i.e. misses(S_{i+1}) \leq misses(S_i))
         Optimal
```

Agrees with

accesses

 S_{ff} on first 0

```
Let S_{ff} be the schedule chosen by our greedy algorithm

Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i (i.e. misses(S_{i+1}) \leq misses(S_i))
```


Let S_{ff} be the schedule chosen by our greedy algorithm

Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses.

We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i (i.e. $misses(S_{i+1}) \leq misses(S_i)$)

Let S_{ff} be the schedule chosen by our greedy algorithm

Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i (i.e. $misses(S_{i+1}) \leq misses(S_i)$)

Let S_{ff} be the schedule chosen by our greedy algorithm

Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i (i.e. $misses(S_{i+1}) \leq misses(S_i)$)

Belady Exchange Proof Idea

Belady Exchange Proof Idea

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$ Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same $S_i \text{ Cache after } i \quad d \quad e \quad f$ Consider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither $\underline{S_i}$ nor $\underline{S_{ff}}$ evict from the cache, use the same cache for $\underline{S_{i+1}}$

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = \underline{d}$

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

$$S_i = \frac{S_{i+1} \text{ Cache after } i}{S_{i+1} \text{ Cache after } i} = \frac{e}{d} = \frac{S_{i+1}}{S_{i+1} \text{ Cache after } i} = \frac{same}{same}$$

$$S_{i+1} \text{ Will } = \frac{S_{i+1} \text{ Cache after } i}{S_{i+1} \text{ Cache after } i} = \frac{same}{same}$$

$$S_{i+1} \text{ Will } = \frac{S_{i+1} \text{ Cache after } i}{S_{i+1} \text{ Cache after } i} = \frac{same}{same}$$

$$S_{i+1} \text{ Will } = \frac{S_{i+1} \text{ Cache after } i}{S_{i+1} \text{ Cache after } i} = \frac{same}{same}$$

$$S_{i+1} \text{ Will } = \frac{S_{i+1} \text{ Cache after } i}{S_{i+1} \text{ Cache after } i} = \frac{same}{same}$$

$$S_{i+1} \text{ Will } = \frac{S_{i+1} \text{ Cache after } i}{S_{i+1} \text{ Cache after } i} = \frac{same}{same}$$

Proof of Lemma

```
Goal: find S_{i+1} s.t. misses(S_{i+1}) \leq misses(S_i)
```

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i + 1 will be the same

Consider access $m_{i+1} = \underline{d}$ - all miss

Case 3: if d isn't in the cache, S_i evicts e and S_{ff} evicts f from the cache

 S_i Cache after i+1

 S_{ff} Cache after i+1

Case 3

 m_t = the first access after $\underline{i+1}$ in which $\underline{S_i}$ deals with \underline{e} or \underline{f} 3 options: $\underline{m_t} = \underline{e}$ or $\underline{m_t} = \underline{f}$ or $\underline{m_t} = \underline{x} \neq \underline{e}$, f

Case 3, $m_t = e$

 $m_t=$ the first access after i+1 in which S_i deals with e or f 3 options: $m_t=e$ or $m_t=f$ or $m_t=x\neq e$, f

Case 3, $m_t = e$

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Case 3,
$$m_t = e$$

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i must load e into the cache, assume it evicts x

 S_{i+1} will load f into the cache, evicting x

The caches now match!

 S_{i+1} behaved exactly the same as S_i between $i \vdash 1$ and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 $m_t=$ the first access after i+1 in which S_i deals with e or f 3 options: $m_t=e$ or $m_t=f$ or $m_t=x\neq e$, f

Case 3, $m_t = f$

Case 3, $m_t = x \neq e$, f

 $m_t =$ the first access after i+1 in which S_i deals with e or f 3 options: $m_t = e$ or $m_t = f$ or $m_t = \underline{x} \neq e$, f

Case 3, $m_t = x \neq e$, f

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i loads \underline{x} into the cache, it must be evicting f - cache miss

Six also has cacle miss for X, evict e, load X

caches now nedch!

Case 3,
$$m_t = x \neq e$$
, f

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i loads x into the cache, it must be evicting f

 S_{i+1} will load x into the cache, evicting e

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i+1 and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Use Lemma to show Optimality

