CS4102 Algorithms

Today’s Keywords
* Greedy Algorithms
* Choice Function

* Cache Replacement

 Hardware & Algorithms
CLRS Reading: Chapter 16

Caching Problem i "
Que Compiey
Spece fw"“m
* Why is using too much memory a bad thing?

— V"\Qﬁu(\i Cen be G}fWCnSNQ
— U\SZ(\’\ ’\\0 vl\-\u(/(/l V\«emr\-’ L(‘LU JJS \'@ v Siouir V\-;C_ﬁor\]

— Y

——

Von Neumann Bottleneck

* Named for John von Neumann
* |[nventor of modern computer architecture

* Other notable influences include:
— Mathematics
— Physics
— Economics
— Computer Science

Von Neumann Bottleneck

* Reading from memory is VERY slow
* Big memory = slow memory
e Solution: hierarchical memory

* Takeaway for Algorithms: Memory is time, more memory is a
lot more time Hope it’s not here

If not look here

Hopefully your

data in here
g)
cPU, ~ Cache
registers
Access time:
Access time: Access time: 1,000,000 cycles

~1 cycle ~ 10 cycles

Caching Problem

* Cache misses are very expensive

* When we load something new into cache, we must eliminate
something already there

e We want the best cache “schedule” to minimize the number of
misses

.

Caching Problem Definition

* |nput:

— k = size of the cache

— M = |mq,,m,, ...m,] = memory access pattern
* Qutput:

— “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

—Xample

A@(;DADEADBAECEAYL

_— s

—Xample

A BCDADEADIBAECEA
v v

O

—Xample

D ADEADIUBAETCEA

—Xample

We must evict

something to make

room for D

A B

CDADEADIBAECEA
v vV VR

—Xample

\ If we evict A

A BCDADEADIBAECEA
VR R

A

AN

—Xample

If we evict C

D EADBAECEA

Our Problem vs Reality

Assuming we know the entire access pattern
Cache is Fully Associative - an merery sddren cn go onyubers it b
Counting # of fetches (not necessarily misses)

“Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of fetches)

Our Problem vs Reality

* Assuming we know the entire access pattern
* Cache is Fully Associative
* Counting # of fetches (not necessarily misses)

 “Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of fetches)

(=
N Unreduced
A BC\WDADEADIBATETCTEA
¢ D
Reduced

A BCDADTEADUBAETCTEA

Our Problem vs Reality

* Assuming we know the entire access pattern
* Cache is Fully Associative
* Counting # of fetches (not necessarily misses)

e “Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of fetches)

N

Unreduced

ABCDADEADUBAETCTEA

N Leaving A in longer does
Reduced not save fetches

A BCDADTEADUBAETCTEA

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

e How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

17

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B C
v v

|
D
X

A

D

E

A

18

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

2‘

Evict B

ABCDADTEADTBATECEA
v vV VR8IV VR ——

Greedy choice property

* Belady evict rule:
— Evict the item accessed farthest in the future

T e e—

—

—

AECEA

ABCDADE/ADé
VR RS %

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

i
C
x

A B CDAUDEADUBAE
///x//x//x&/

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

—_—

N——————

A BCDADEADIUBAEC CEA
IIVVRI RIT RS R

4 Cache Misses

22

Greedy Algorithms

* Require Optimal Substructure

—

— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

e How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

23

Caching Greedy Algorithm

Initialize cache= first k accesses ~ O(<)

For each m; € M: n e S
if m; € cache: O(c)
7 .
print cache O(k)
else:

m = furthest-in-future from cache Q

—

evict m, load m; O)
print cache O(¥)

—Xchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse

— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

e rn ‘DC(%M

evi % ¢ o
Let S; + be the schedule chosen by our greedy algorithm = et ftest ~ 5

Let 5; be a schedule which agrees with 5S¢+ for the first i memory accesses.

We will show: there is a schedule 5;, ; which agrees with 5¢¢ for the first
[+ 1 memory accesses, and has no more misses than 5;

(i.e. misses(S; ;) < misses(S;))

26

FLet S¢¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢+ for the first i memory accesses.

We will show: there is a schedule 5;, ; which agrees with 5¢¢ for the first
& [+ 1 memory accesses, and has no more misses than §;

(i.e. misses(S; ;) < misses(S;))

o
v

Optimal
Agrees with

S¢r on first O .
accesses

Let 5S¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢+ for the first i memory accesses.

We will show: there is a schedule 5;, ; which agrees with 5¢¢ for the first
[+ 1 memory accesses, and has no more misses than §;

(i.e. misses(S; ;) < misses(S;))

Optimal Greedy

Agrees with Agrees with
Sff on first O Sff onalln >3

accesses accesses

[Let S¢¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢+ for the first i memory accesses.

We will show: there is a schedule 5;, ; which agrees with 5¢¢ for the first
[+ 1 memory accesses, and has no more misses than 5;

k (i.;nisses(5i+1) < misses(S5;))

So —> 5(

Optimal Greedy

Lemma
¢) S
S 31 ff
Agrees with Agrees with Agrees with
S¢ron first 0 S¢r on first Seronalln -

accesses access accesses

Let 5S¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢ for the first i memory accesses

We will show: there is a schedule 5;, ; which agrees with 5¢¢ for the first
. + 1 memory accesses, and has no more misses than §;

(i.e. misses(S;,,) < misses(S;))

S, — S,

Optimal Greedy

Lemma Lemma

*
‘ Sl ‘ SZ Sff
Agrees with Agrees with Agrees with Agrees with
S¢ron first 0 S¢r on first S¢r on first 2 Seronalln

accesses access accesses accesses

30

Let 5S¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢+ for the first i memory accesses.

We will show: there is a schedule 5; ; which agrees with 5¢¢ for the first
i + 1 memory accesses, and has no more misses than S;

(i.e. misses(S;,,) < misses(S;))
]

Optimal

Lemma Lemma

= @@=

Agrees with Agrees with Agrees with s
S¢ron first 0 S¢r on first S¢r on first 2 Seronalln .
accesses access accesses accesses

Selagy

First i accesses

—xchange

Proof |[dea

T

,/ Qx W(

d ’_ u‘,,\f\' 4.9

Cavle e VA
- $3€5

L E!IIII

Selagy

First i accesses

—xchange

Proof |[dea

BEEEEEERE

Need to fill in the rest
o BEEEEEEE e

Must agree with S¢¢

s | [I 1 I I

more misses than S;

Proot of

Goal: find S;44 s.t. misses(S;11) < misses(S;)

Since 5; agrees with Sff for the first [accesses, the

state of the cache at access i + 1 W|II be the same
e

- S; Cache after i fi, & f - S¢r Cache after i i__ & f

Consider accessm;,; = d

—

Case 1:if d is in the cache, then neither_S_l- nor S¢¢
evict from the cache, use the same cache for S;. ;

Si = S;+1 Cache after i g ne o "_’SrFf_

p—

Mg > M Copt uh L L+ s did

&

34

Proot of

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

—
—_—

Sff Cache after i < f

—

S; Cache afteri < _[__

Consider accessm;yq = d

Case 2:if d isn’t in the cache,zand both 5; and
Ser evictl from the cache, evict f ford in 5;_ 4

SE=ll S; .. Cache afteri < 6 = S«D}
: SamMme

Sen wilt Loy Se L L Me el of A cccewes: =D A of wisse(,

oS

vl

Proot of

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

—_—
S; Cache after i ; f - S¢r Cache after i € f._

Consideraccessmj,; =d -~ ~le i

g

Case 3:if d isn’tin the cache, 5; evicts e and 5S¢
evicts f from the cache

)
S; Cache after i + 1 d | f ol s Cacheafteri+1 € ¢

Wit

36

., Gase 3
Y

First i accesses \ ¢

'IIIIIIII

---J-----
St L

Case 3

First i accesses

A
| \
s | 1 I 1 [[)

Need to fill in the rest

Sm---’----dmmﬁf

more misses than §;

Must agree with S¢¢

s | [I 1 I I

Case 3
\

'
First i accesses N

}ﬁ,CopyS
I3
S+ [1 T ||

SN
—

TFlrst place S; involves e or f - ~ Lk -op

Srf --------

m; = the first access after i + 1 in which 5; deals with e or f

——
—

3optionssm, =e orm,=form,=x#e,f =

Case 3, my = e

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂlllliigl

First place S; usese or f

s | [I 1 I I

m, = the first access after i + 1 in which S; deals with e or f

3 options: m; = e

Case 3, my = e

Goal: find S; ., s.t. misses(S;,,) < misses(S);)

S Cache aftert —1 % ¢ f + Si1, Cacheaftert—1 ~* € d
e — — £ —

5; must load e into S will el £ il

the cache, assume it Mo cache, euik ¥

evicts x
- tad PSS Nowd Qc‘o\y Y\ﬂﬁ‘l‘b"\l

/

17

41

Case 3, my = e

Goal: find S; ., s.t. misses(S;,,) < misses(S);)

S; Cacheaftert —1 * 7 S;.; Cacheaftert —1 * € d

f
5; must load e into S;+1 will load f into
the cache, assume it the cache, evicting x
evicts x

The caches now match!

Si+1 behaved exactly the same as 5; between i+
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;)

42

Case 3, my = f

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂllllii?I

First place S; usese or f

s | [I 1 I I

m, = the first access after i + 1 in which S; deals with e or f

3 options: m;=f

Case 3, my = f

Cannot Happen! i\
s | 1 I 1 [[)
“Evict [

II?I

-irst place S; uses e or f
1s f not farthest future access!

“Byict f1 — euick T Moy acers Retlat

— |-v\ 4 'CA\VC

Case 3, mg=x*e,f

Fwstlaccesses xe,

_/®

&Q Copy 5;
. 1 |

'Qi'ig-

First place S; usese or f

s | 1 I 1 I

m; = the first access after i + 1 in which 5; deals with e or f

3 options: m;,=x+e,f

Case 3, mg=x+e,f

Goal: find S; ., s.t. misses(S;,,) < misses(S);)

S; Cache aftert — 1 A :'t S;;1 Cache aftert — 1 / d
X

—

X
S; loads x into the St ale by cade wiss e X
cache, it must be evitk e lbad X

evicting [— ek miss

Cace NoA l'\‘-A cn "

—_—

46

Case 3, my=x +*e,f

Goal: find S; ., s.t. misses(S;,,) < misses(S);)

S; Cache aftert — 1 a f :'t S;;1 Cache aftert — 1 € d

X X

S; loads x into the S;+1 will load x into
cache, it must be the cache, evicting e
evicting f

The caches now match!

S;+1 behaved exactly the same as 5; between i+|
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;)

-’&

47

Use Lemma to show Optimality

- 0(1"

g b opt o

Lemma Lemma Lemma Lemma
‘ ST =2 S>)|) Sf f
Agrees with Agrees with Agrees with Agrees with
S¢r on first O S¢r on first S¢r on first 2 Sgronalln
accesses

accesses access accesses

