CS4102 Algorithms

Spring 2020

Warm up:

Show that the sum of degrees of all nodes in any undirected graph is even

Show that for any graph $G=(V, E)$, $\sum_{v \in V} \operatorname{deg}(v)$ is even

$\sum_{v \in V} \operatorname{deg}(v)$ is always even

- $\operatorname{deg}(v)$ counts the number of edges incident v
- Consider any edge e $\in E$
- This edge is incident 2 vertices (on each end)
- This means $2 \cdot|E|=\sum_{v \in V} \operatorname{deg}(v)$
- Therefore $\sum_{v \in V} \operatorname{deg}(v)$ is even

Today's Keywords

- Greedy Algorithms
- Choice Function
- Graphs
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- Cut Theorem

ARPANET

Problem

Find a
Minimum
Spanning Tree

We need to connect together all these places into a network We have feasible wires to run, plus the cost of each wire Find the cheapest set of wires to run to connect all places

Graphs

Vertices/Nodes

Definition: $G=(V, E)$

 $w(e)=$ weight of edge e

Adjacency List Representation

Tradeoffs
Space: $V+E$
Time to list neighbors: Degree (A)
Time to check edge (A, B) :Degree (A)

A	B	C		
B	A	C	E	
C	A	B	D	F
D	C	E	F	
E	B	D	G	H
F	C	D	G	
G	E	F	H	1
H	E	G	I	
1	G	H		

Adjacency Matrix Representation

Tradeoffs
Space: V^{2}
Time to list neighbors: V
Time to check edge (A, B):O(1)

Definition: Path

Simple Path:
A path in which each node appears at most once

Cycle:
A path of >2 nodes in which $v_{1}=v_{k}$ and all other nodes appear at most once

Definition: Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes
$v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Note: we're talking about undirected graphs here.
It's a more complex situation for directed graphs (see "strongly connected").

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T=\left(V_{T}, E_{T}\right)$ which connects ("spans") all the nodes in a graph $G=(V, E)$

How many edges does T have?

$$
V-1
$$

Definition: Minimum Spanning Tree

A Tree $T=\left(V_{T}, E_{T}\right)$ which connects ("spans") all the nodes in a graph $G=(V, E)$, that has minimal cost

$$
\operatorname{Cost}(T)=\sum_{e \in E_{T}} w(e)
$$

How many edges does T have?

$$
V-1
$$

Greedy Algorithms

- Require Optimal Substructure
- Optimal solution to a problem contains optimal solutions to subproblems
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Kruskal's Algorithm

We want a tree, but we'll start an empty forest A (set of trees). A will eventually become just one tree.

Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty forest A
Add to A the lowest-weight edge that does not create a cycle.

Question: what organization of info about the graph do we need to be able to add an edge?

Kruskal's Algorithm

Start with an empty forest A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty forest A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty forest A
Add to A the lowest-weight edge that does not create a cycle

Each edge added either "grows" a tree or combines two. Can you complete this process until we have just one tree?

Kruskal's Algorithm

Start with an empty forest A
Add to A the lowest-weight edge that does not create a cycle

Definition: Cut

A Cut of graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

Edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut
e.g. $R=\{(A, B),(E, G),(F, G)\}$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let ($S, V-S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem : Another Example

If a set of edges A is a subset of a minimum spanning tree T, let ($S, V-S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Can we draw a different cut?

Cut Theorem : Yet Another Example

If a set of edges A is a subset of a minimum spanning tree T, let ($S, V-S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Can we draw a different cut?

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

Consider if $e=\left(v_{1}, v_{2}\right) \notin T$ Since T is a MST, there is some path from v_{1} to v_{2}.

Let e^{\prime} be the first edge on this path which crosses the cut

Build tree T^{\prime} by exchanging edge e for e^{\prime}

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

Consider if $e=\left(v_{1}, v_{2}\right) \notin T$
$T^{\prime}=T$ with edge e instead of e^{\prime} We assumed $w(e) \leq w\left(e^{\prime}\right)$ $w\left(T^{\prime}\right)=w(T)-w\left(e^{\prime}\right)+w(e)$
$w\left(T^{\prime}\right) \leq w(T)$
So T^{\prime} is also a MST!
Thus the claim holds

Kruskal's Algorithm: Time Complexity?

Start with an empty forest A
Repeat $V-1$ times:
Add the min-weight edge that doesn't cause a cycle

First, need to sort edges.
At each step:

- Does edge connect nodes in same tree?
- If not, "union" nodes in two trees to make one.
Problem: Union/Find for sets Solution: Keep edges in a Disjoint-set data structure (very fancy)
$O(E \log V)$

General MST Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$

Prim's Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$
S is set of nodes that are endpoints of edges in A
e is the min-weight edge that grows the tree

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node

Keep edges in a Heap

$O(E \log V)$

Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Can you finish this?

Summary of MST results

- Fredman-Tarjan '84:
- Gabow et al '86:
$\Theta\left(E \log \log ^{*} V\right)$
- Chazelle ‘00: $\Theta(E \alpha(V))$
- Pettie-Ramachandran '02:
- Karger-Klein-Tarjan ‘95: $\Theta(?)$ (optimal)
$\Theta(E)$ (randomized)
- [read and summarize any/all for EC]
- [read and summarize about union/find for sets for EC]

