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Show that no cycle crosses a cut exactly once

* Consider an edge e = (u, v) that
crosses the cut

 After removing the edge ¢ from
the graph, there is still a path
fromueStov s

* At least one edge along the path
from cross the cut




Today’s Keywords

Graphs

Shortest paths algorithms
Dijkstra’s algorithm
Breadth-first search (BFS)

CLRS Readings: Chapter 22, 23



Minimum Spanning Tree

Atree T = (Vg , E) is a minimum spanning tree for an
undirected graph G = (V,E) if T is a spanning tree of
minimal cost




Minimum Spanning Tree

Reminder: Kruskal’s is the first of two greedy algorithms!

Kruskal: add minimum-weight edge that does not introduce a cycle
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Minimum Spanning Tree

Reminder: Kruskal’s is the first of two greedy algorithms!

And so on...
See previous
lecture slides

Kruskal: add minimum-weight edge that does not introduce a cycle
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Minimum Spanning Tree

Reminder: Prim’s is the second of two greedy algorithms!

Prim: “grow” a tree by adding minimum-weight edge
from the tree to an external node °
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Minimum Spanning Tree

Reminder: Prim’s is the second of two greedy algorithms!

And so on...
See previous
lecture slides

Prim: “grow” a tree by adding minimum-weight edge
from the tree to an external node e




Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T’
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with a node notin T

Implementation (with nodes in the priority queue):
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
pick a starting node s and set d. = 0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu € PQandw(v,u) < d,:
PQ. decreaseKey(u, w(v, u))
u.parent = v 13
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Implementation (with nodes in the priority queue):
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()

for each u € V such that (v,u) € E: 8
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Prim’s Algorithm Implementation

Implementation (with nodes in the priority queue):
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
pick a starting node sandsetd. =0
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Prim’s Algorithm Running Time

Implementation (with nodes in the priority queue):

initialize d,, = oo for each node v Initialization:
add all nodes v € V to the priority queue PQ, using d,, as the key o(V])
pick a starting node sandsetd. =0
while PQ is not empty: |V | iterations
v = PQ. extractMin() 0(log|V])
for each u € V such that (v,u) € E: |E| iterations total
ifuePQandw(v,u) < d,: -
PQ. decreaseKey(u, w(v,u)) O(log|V|)

u.parent = v

Overall running time: O(|V|log|V| + |E|log|V]|) = O(|E|log|V])
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Single-Source Shortest Path
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Find the shortest path from UVA to each of these other places
Given a graph G = (V, E) and a start node (i.e., source) s € V,

for each v € V find the minimum-weight path from s = v (call this weight § (s, v))
Assumption (for now): all edge weights are positive
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Dijkstra’s SP Algorithm

1. Start with an empty tree T and add the sourceto T
2. Repeat |V| — 1 times:
 Add the node nearest to the source that’s notyetinT to T
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Prim’s MST Algorithm

1. Start with an empty tree T and pick a start node and add itto T’
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with a node notin T
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Prim’s MST Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T’
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with a node notin T

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
pick a starting node s and set d. = 0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu € PQand w(v,u) < dy: PQ’s key: weight of a single

PQ. decreaseKey(u, w(v,u)) connecting edge

u.parent = v 2



Dijkstra’s SP Algorithm Implementation

1. Start with an empty tree T and add the sourceto T

2. Repeat |V| — 1 times:
e Addthe “nearest” node notyetinT toT

Implementation:
initialize d,, = oo for each node v

add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifuePQandd, +w(v,u) <d,:
PQ. decreaseKey(u, + w(v, u))
u.parent = v

PQ’s key: length of shortest
path s = u using nodes in PQ
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Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v

add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:

v = PQ. extractMin()

for each u € V such that (v,u) € E: 3
ifuePQandd, +w(,u) <d,: 10 @ @
PQ. decreaseKey(u, d, + w(v, u)) - 8
u.parent = v 0 9 @ )

12 3
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Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v

add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifuePQandd, +w(v,u) <d,:
PQ.decreaseKey(u, d, + w(v,u))
u.parent = v

10
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Implementation:
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Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v

add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E: 3
ifuePQandd, +w(v,u) <d,:
PQ.decreaseKey(u, d, + w(v,u))
u.parent = v

Every subpath of a shortest path is itself a

shortest path (optimal substructure)

Observe: shortest paths from a source forms a
tree, but not a minimum spanning tree .



Dijkstra’s Algorithm Running Time

Implementation:

initialize d,, = oo for each node v Initialization:
add all nodes v € V to the priority queue PQ, using d,, as the key o(v])
setd, =0
while PQ is not empty: |V| iterations
v = PQ. extractMin() 0(log|V])
for each u € V such that (v,u) € E: 2|E| iterations total
ifu€ePQandd, +w(v,u) <d,: -
PQ.decreaseKey(u, d, + w(v,u)) O(log|V])

u.parent = v

Overall running time: O(|V|log|V| + |E|log|V]|) = O(|E|log|V])
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the
priority queue, d,, = 6(s,u)
* Claim 1: There is a path of length d,, (aslongas d,, < o) fromstouinG
* Claim 2: For every path (s, ...,u), w(s, ...,u) = d,
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Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes v; = s, ..., v; have been
removed from PQ, and for each of them d,,, = §(s,v;), and there is a
path from s to v; with distance d,,, (whenever d,,, < )

Base case:
i =0:v =5
* Claim holds trivially
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Correctness of Dijkstra’s Algorithm: Claim 1

Let u be the (i + 1)5 node extracted
Claim 1: There is a path of length d,, (aslongasd, < o) fromstouinG

Proof:

Suppose d,, < o0

This means that PQ. decreaseKey was invoked on node u on an earlier
iteration

Consider the last time PQ. decreaseKey is invoked on node u

PQ. decreaseKey is only invoked when there exists an edge (v,u) € E and
node v was extracted from PQ in a previous iteration

In this case, d,, = d, + w(v, u)
By the inductive hypothesis, there is a path s = v of length d,, in G and since
there is an edge (v,u) € E, there is a path s —» u of lengthd, in G
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5 node extracted
Claim 2: For every path (s, ..., u), w(s, ...,u) = d,,

Extracted nodes define a cut (S,V — S) of G

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5 node extracted
Claim 2: For every path (s, ..., u), w(s, ...,u) = d,,

Extracted nodes define a cut (S,V — S) of G
Take any path (s, ..., 1)
Sinceu ¢ S, (s, ..., 1) crosses the cut somewhere
. * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x) +w(x,y)+w(y,.., u)

w(s,..,u) =w(s, ., x) +w(x,y) +w(y,..,u)
W w(s,...,x) = 6(s,x) since §(s, x) is weight of

shortest path from s to x

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5 node extracted
Claim 2: For every path (s, ..., u), w(s, ...,u) = d,,

Extracted nodes define a cut (S,V — S) of G
Take any path (s, ..., u)

Sinceu ¢ S, (s, ..., 1) crosses the cut somewhere
. * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x) +w(x,y)+w(y,.., u)
= d, +w(x,y) +w(y,..,u)

Inductive hypothesis: since x was extracted
before, d,, = §(s, x)

46
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5 node extracted
Claim 2: For every path (s, ..., u), w(s, ...,u) = d,,

Extracted nodes define a cut (S,V — S) of G
Take any path (s, ..., u)

Sinceu ¢ S, (s, ..., 1) crosses the cut somewhere
. * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x) +w(x,y)+w(y,.., u)
= d, +w(x,y) +w(y,..,u)

W > d, +w(, .., u)
By construction of Dijkstra’s algorithm, when x is

extracted, d,, is updated to satisfy
dy <dy +w(x,y)

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5 node extracted
Claim 2: For every path (s, ..., u), w(s, ...,u) = d,,

Extracted nodes define a cut (S,V — S) of G
Take any path (s, ..., u)

Sinceu ¢ S, (s, ..., 1) crosses the cut somewhere
. * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,...,u) 6(s,x) +w(x,y) +w(y,..,u)
d, + w(x,y) +w(y,..,u)
dy, +w(y,..,u)

> d,+w(y,..,u)

-/

Greedy choice property: we always extract the

node of minimal distance so d,, < d,,
48

extracted nodes




Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5 node extracted
Claim 2: For every path (s, ..., u), w(s, ...,u) = d,,

Extracted nodes define a cut (S,V — S) of G
Take any path (s, ..., u)

Sinceu ¢ S, (s, ..., 1) crosses the cut somewhere
. * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,...,u)

6(s,x) +w(x,y) +w(y,..,u)
d, + w(x,y) +w(y,..,u)

vV v IV Il IV

dy, +w(y,..,u)
d, +w(y,..,u)
dll

extracted nodes

All edge weights assumed to be positive49



Correctness of Dijkstra’s Algorithm

Proof by induction

Proof Idea: we will show that when node u is removed from the
priority queue, d,, = 6(s,u)
* Claim 1: There is a path of length d,, (aslongas d,, < o) fromstouinG
* Claim 2: For every path (s, ...,u), w(s, ...,u) = d,
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Breadth-First Search

Input: a graph ( (weighted or unweighted) and a node s

Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, until all nodes have been visited

Output: BFS can be used to do many useful things, so lots of choices!

* |s the graph connected?
* |s there a path from s to u?
* Smallest number of “hops” from s to u
Sounds like a “shortest path” property!

Notes: BFS doesn’t use edge weights at all!
Also, depth-first search (DFS) also similarly useful

51



Dijkstra’s SP Algorithm

initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifuePQandd, +w(v,u) <d,:
PQ. decreaseKey(u, d, + w(v, u))
u.parent = v
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Breadth-First Search

initialize a flag d,, = 0 for each node v
pick a start node s
Q. push(s)
while () is not empty:

v =Q.pop() andsetd, =1

for each u € V such that (v,u) € E:

ifd, =0:
Q.push(u)

Key observation: replace the priority queue with a queue
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Breadth-First Search: Time Complexity

initialize a flag d,, = 0 for each node v Initialization: O (|V|)
pick a start node s
Q. push(s)
while () is not empty: |V| iterations

v =Q.pop() andsetd, =1

for each u € V such that (v,u) € E: 2|E| iterations total

ifd, =0:
Q.push(u)

Overall running time: O(|E| + |V])
The larger of |E| and |V|. (For graphs, we call this “linear”.)
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BFS to Count Number of Hops

initialize a counter d,, = oo for each node v
pick a start node s and setd. = 0
Q. push(s)
while () is not empty:
v = Q.pop()
for each u € V such that (v,u) € E:
if d,, = oo:
Q.push(u)
d,=d,+1
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BFS Trees

Let’s draw a BFS tree, a trace of its execution
e Number each node as visited
e Distance from start

 Tree edges vs non-tree edges




(Duplicated slide) BFS Trees

Let’s draw a BFS tree, a trace of its execution ka,r; o J 3 4: ( Z -/

e Number each node as visited ‘
A <
e Distance from start @ /’\

s >
 Tree edges vs non-tree edges A\ g/ A C

S

c.*”



Summary

Shortest path in weighted-graphs (single-source)
* Dijkstra’s SP Algorithm
*  Greedy algorithm
*  Similarin structure to Prim’s MST algorithm
*  Priority queue ordered by distance from start (not connecting edge weight)

Unweighted graphs, number of “hops”
e Distance is number of edges (not sum of edge weights)

* Breadth-first Search (BFS)
* Not greedy. Doesn’t used edge weights

BFS (and DFS) useful to solve many other graph problems
e Connectivity, find cycles, ....



