CS 4102: Algorithms

Shortest Path Algorithms

Tom Horton and Robbie Hott Spring 2020

Warm-Up

Show that no cycle crosses a cut exactly once

- Consider an edge e = (u, v) that crosses the cut
- After removing the edge *e* from the graph, there is still a path from *u* ∈ *S* to *v* ∉ *S*
- At least one edge along the path from cross the cut

Today's Keywords

Graphs Shortest paths algorithms Dijkstra's algorithm Breadth-first search (BFS)

CLRS Readings: Chapter 22, 23

$$\operatorname{Cost}(T) = \sum_{e \in E_T} w(e)$$

A tree $T = (V_T, E_T)$ is a **minimum spanning tree** for an <u>undirected</u> graph G = (V, E) if T is a spanning tree of minimal cost

Reminder: **Kruskal's** is the first of two greedy algorithms!

Kruskal: add minimum-weight edge that does not introduce a cycle

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle

Reminder: **Kruskal's** is the first of two greedy algorithms!

Kruskal: add minimum-weight edge that does not introduce a cycle

7

Reminder: **Kruskal's** is the first of two greedy algorithms!

8

Kruskal: add minimum-weight edge that does not introduce a cycle

Reminder: **Prim's** is the second of two greedy algorithms!

Reminder: **Prim's** is the second of two greedy algorithms!

Reminder: **Prim's** is the second of two greedy algorithms!

Reminder: **Prim's** is the second of two greedy algorithms!

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

Implementation (with nodes in the priority queue):

u. parent = v

initialize $d_v = \infty$ for each node vadd all nodes $v \in V$ to the priority queue PQ, using d_v as the key pick a starting node s and set $d_s = 0$ while PQ is not empty: v = PQ. extractMin() for each $u \in V$ such that $(v, u) \in E$: if $u \in PQ$ and $w(v, u) < d_u$: PQ. decreaseKey(u, w(v, u))

each node also maintains a parent, initially NULL

13

Implementation (with nodes in the priority queue):

Prim's Algorithm Running Time

Implementation (with nodes in the priority queue):

initialize $d_v = \infty$ for each node vInitialization:add all nodes $v \in V$ to the priority queue PQ, using d_v as the keyO(|V|)pick a starting node s and set $d_s = 0$ V| iterationswhile PQ is not empty:|V| iterationsv = PQ. extractMin() $O(\log|V|)$ for each $u \in V$ such that $(v, u) \in E$:|E| iterations totalif $u \in PQ$ and $w(v, u) < d_u$: $O(\log|V|)$ v. parent = v $O(\log|V|)$

Overall running time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

Single-Source Shortest Path

Find the <u>shortest path</u> from UVA to each of these other places Given a graph G = (V, E) and a start node (i.e., source) $s \in V$,

for each $v \in V$ find the minimum-weight path from $s \to v$ (call this weight $\delta(s, v)$) Assumption (for now): all edge weights are positive

Dijkstra's SP Algorithm

- 1. Start with an empty tree T and add the source to T
- 2. Repeat |V| 1 times:
 - Add the node <u>nearest to the source that's not yet in T to T</u>

Prim's MST Algorithm

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which <u>connects</u> a node in T with a node not in T

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

Implementation:

- 1. Start with an empty tree T and add the source to T
- 2. Repeat |V| 1 times:
 - Add the "nearest" node not yet in T to T

```
initialize d_v = \infty for each node v
add all nodes v \in V to the priority queue PQ, using d_v as the key
set d_s = 0
while PQ is not empty:
v = PQ. extractMin()
for each u \in V such that (v, u) \in E:
if u \in PQ and d_v + w(v, u) < d_u:
PQ. decreaseKey(u, d_v + w(v, u))
u. parent = v
PQ
```


Dijkstra's Algorithm Implementation

Implementation:

Dijkstra's Algorithm Implementation

Implementation:

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{\nu} = \infty$ for each node ν add all nodes $v \in V$ to the priority queue PQ, using d_v as the key set $d_s = 0$ while PQ is not empty: v = PQ. extractMin()for each $u \in V$ such that $(v, u) \in E$: 8 if $u \in PQ$ and $d_v + w(v, u) < d_u$: 18 10 8 PQ. decreaseKey $(u, d_v + w(v, u))$ u.parent = v9 5 9 Every subpath of a shortest path is itself a 12 shortest path (optimal substructure) 3 11 **Observe:** shortest paths from a source forms a 6 tree, but **not** a minimum spanning tree

39

Dijkstra's Algorithm Running Time

Implementation:

•		
	initialize $d_v = \infty$ for each node v	Initialization:
	add all nodes $v \in V$ to the priority queue PQ, using d_v as the key	O(V)
	set $d_s = 0$	
	while PQ is not empty:	V iterations
	v = PQ. extractMin()	$O(\log V)$
	for each $u \in V$ such that $(v, u) \in E$:	2 E iterations total
	if $u \in PQ$ and $\frac{d_v}{v} + w(v, u) < \frac{d_u}{u}$:	
	PQ. decreaseKey $(u, d_v + w(v, u))$	$O(\log V)$
	u. parent = v	

Overall running time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

Dijkstra's Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_u = \delta(s, u)$

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Inductive hypothesis: Suppose that nodes $v_1 = s, ..., v_i$ have been removed from PQ, and for each of them $d_{v_i} = \delta(s, v_i)$, and there is a path from s to v_i with distance d_{v_i} (whenever $d_{v_i} < \infty$)

Base case:

- i = 0: $v_1 = s$
- Claim holds trivially

Let u be the $(i + 1)^{st}$ node extracted

Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G

Proof:

- Suppose $d_u < \infty$
- This means that PQ. decreaseKey was invoked on node *u* on an earlier iteration
- Consider the last time PQ. decreaseKey is invoked on node *u*
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_u = d_v + w(v, u)$
- By the inductive hypothesis, there is a path $s \to v$ of length d_v in G and since there is an edge $(v, u) \in E$, there is a path $s \to u$ of length d_u in G

Let u be the $(i + 1)^{st}$ node extracted **Claim 2:** For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes define a cut (S, V - S) of G

Let \underline{u} be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

Extracted nodes define a cut (S, V - S) of GTake any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (*x*, *y*) be last edge in the path that crosses the cut

 $w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$

 $w(s, \dots, u) = w(s, \dots, x) + w(x, y) + w(y, \dots, u)$

 $w(s, ..., x) \ge \delta(s, x)$ since $\delta(s, x)$ is weight of shortest path from s to x

Let \underline{u} be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

Extracted nodes define a cut (S, V - S) of GTake any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (*x*, *y*) be last edge in the path that crosses the cut

$$w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$$
$$= d_x + w(x, y) + w(y, \dots, u)$$

Inductive hypothesis: since *x* was extracted before, $d_x = \delta(s, x)$

Let \underline{u} be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

Extracted nodes define a cut (S, V - S) of GTake any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (*x*, *y*) be last edge in the path that crosses the cut

$$w(s, \dots, u) \geq \delta(s, x) + w(x, y) + w(y, \dots, u)$$

= $d_x + w(x, y) + w(y, \dots, u)$
 $\geq d_y + w(y, \dots, u)$

By construction of Dijkstra's algorithm, when x is extracted, d_y is updated to satisfy

$$d_y \le d_x + w(x, y)$$

47

Let \underline{u} be the $(i + 1)^{st}$ node extracted

Claim 2: For every path (s, ..., u), $w(s, ..., u) \ge d_u$

Extracted nodes define a cut (S, V - S) of GTake any path (s, ..., u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (*x*, *y*) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$
 $\geq d_u + w(y, ..., u)$

Greedy choice property: we always extract the node of minimal distance so $d_u \le d_y$

Let u be the $(i + 1)^{st}$ node extracted

Claim 2: For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Extracted nodes define a cut (S, V - S) of G Take any path (s, \ldots, u)

Since $u \notin S$, (s, ..., u) crosses the cut somewhere

• Let (x, y) be last edge in the path that crosses the cut

$$w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u)$$

= $d_x + w(x, y) + w(y, ..., u)$
 $\geq d_y + w(y, ..., u)$
 $\geq d_u + w(y, ..., u)$
 $\geq d_u$

All edge weights assumed to be positive

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_u = \delta(s, u)$

- Claim 1: There is a path of length d_u (as long as $d_u < \infty$) from s to u in G
- Claim 2: For every path $(s, ..., u), w(s, ..., u) \ge d_u$

Breadth-First Search

Input: a graph *G* (weighted or unweighted) and a node *s*

Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, until all nodes have been visited

Output: BFS can be used to do many useful things, so lots of choices!

- Is the graph connected?
- Is there a path from *s* to *u*?
- Smallest number of "hops" from s to u

Sounds like a "shortest path" property!

Notes: BFS doesn't use edge weights at all! Also, depth-first search (DFS) also similarly useful

Dijkstra's SP Algorithm

initialize $d_v = \infty$ for each node vadd all nodes $v \in V$ to the priority queue PQ, using d_v as the key set $d_s = 0$ while PQ is not empty: v = PQ. extractMin() for each $u \in V$ such that $(v, u) \in E$: if $u \in PQ$ and $d_v + w(v, u) < d_u$: PQ. decreaseKey $(u, d_v + w(v, u))$ u. parent = v

Breadth-First Search

initialize a flag $d_v = 0$ for each node vpick a start node sQ. push(s) while Q is not empty: v = Q. pop() and set $d_v = 1$ for each $u \in V$ such that $(v, u) \in E$: if $d_u = 0$: Q. push(u)

flag to denote whether a node has been visited or not

Key observation: replace the priority queue with a queue

Breadth-First Search: Time Complexity

initialize a flag $d_v = 0$ for each node vpick a start node sQ. push(s) while Q is not empty: v = Q. pop() and set $d_v = 1$ for each $u \in V$ such that $(v, u) \in E$: if $d_u = 0$: Q. push(u)

Initialization: O(|V|)

|V| iterations

2|*E*| iterations total

۸.

Overall running time: O(|E| + |V|)

The larger of |E| and |V|. (For graphs, we call this "linear".)

BFS to Count Number of Hops

initialize a counter $d_v = \infty$ for each node vpick a start node s and set $d_s = 0$ Q. push(s) while Q is not empty: v = Q. pop() for each $u \in V$ such that $(v, u) \in E$: if $d_u = \infty$: Q. push(u) $d_u = d_v + 1$

counter to denote number of hops from the source

BFS Trees

Let's draw a BFS tree, a trace of its execution

- Number each node as visited
- Distance from start
- Tree edges vs non-tree edges

(Duplicated slide) BFS Trees

Summary

Shortest path in weighted-graphs (single-source)

- Dijkstra's SP Algorithm
 - Greedy algorithm
 - Similar in structure to Prim's MST algorithm
 - Priority queue ordered by distance from start (not connecting edge weight)

Unweighted graphs, number of "hops"

- Distance is number of edges (not sum of edge weights)
- Breadth-first Search (BFS)
 - Not greedy. Doesn't used edge weights

BFS (and DFS) useful to solve many other graph problems

• Connectivity, find cycles,