CS 4102: Algorithms

Shortest Path Algorithms

Tom Horton and Robbie Hott
Spring 2020

Warm-Up

Show that no cycle crosses a cut exactly once

- Consider an edge $e=(u, v)$ that crosses the cut
- After removing the edge e from the graph, there is still a path from $u \in S$ to $v \notin S$
- At least one edge along the path from cross the cut

Today's Keywords

Graphs
Shortest paths algorithms
Dijkstra's algorithm
Breadth-first search (BFS)

CLRS Readings: Chapter 22, 23

Minimum Spanning Tree

$$
\operatorname{Cost}(T)=\sum_{e \in E_{T}} w(e)
$$

A tree $T=\left(V_{T}, E_{T}\right)$ is a minimum spanning tree for an undirected graph $G=(V, E)$ if T is a spanning tree of minimal cost

Minimum Spanning Tree

Reminder: Kruskal's is the first of two greedy algorithms!

Kruskal: add minimum-weight edge that does not introduce a cycle

Minimum Spanning Tree

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle

Minimum Spanning Tree

Reminder: Kruskal's is the first of two greedy algorithms!

Kruskal: add minimum-weight edge that does not introduce a cycle

Minimum Spanning Tree

Reminder: Kruskal's is the first of two greedy algorithms!

> And so on... See previous lecture slides

Kruskal: add minimum-weight edge that does not introduce a cycle

Minimum Spanning Tree

Reminder: Prim's is the second of two greedy algorithms!

Prim: "grow" a tree by adding minimum-weight edge from the tree to an external node

Minimum Spanning Tree

Reminder: Prim's is the second of two greedy algorithms!

Prim: "grow" a tree by adding minimum-weight edge from the tree to an external node

Minimum Spanning Tree

Reminder: Prim's is the second of two greedy algorithms!

Prim: "grow" a tree by adding minimum-weight edge from the tree to an external node

Minimum Spanning Tree

Reminder: Prim's is the second of two greedy algorithms!

And so on... See previous lecture slides

Prim: "grow" a tree by adding minimum-weight edge from the tree to an external node

Prim's Algorithm Implementation

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T Implementation (with nodes in the priority queue):
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL pick a starting node s and set $d_{s}=0$ while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$ u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
$P Q . \operatorname{decreaseKey}(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=$ PQ. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Implementation

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ} . \operatorname{extractMin}()$
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$
u. parent $=v$

Prim's Algorithm Running Time

Implementation (with nodes in the priority queue):

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key pick a starting node s and set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $w(v, u)<d_{u}$:
$P Q . \operatorname{decreaseKey}(u, w(v, u))$
u. parent $=v$

Initialization:
$O(|V|)$
$|V|$ iterations
$O(\log |V|)$
$|E|$ iterations total
$O(\log |V|)$

Overall running time: $O(|V| \log |V|+|E| \log |V|)=O(|E| \log |V|)$

Single-Source Shortest Path

Find the shortest path from UVA to each of these other places Given a graph $G=(V, E)$ and a start node (i.e., source) $s \in V$,
for each $v \in V$ find the minimum-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)
Assumption (for now): all edge weights are positive

Dijkstra's SP Algorithm

1. Start with an empty tree T and add the source to T
2. Repeat $|V|-1$ times:

- Add the node nearest to the source that's not yet in T to T

Prim's MST Algorithm

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T

Prim's MST Algorithm Implementation

1. Start with an empty tree T and pick a start node and add it to T
2. Repeat $|V|-1$ times:

- Add the min-weight edge which connects a node in T with a node not in T Implementation:
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL
pick a starting node s and set $d_{s}=0$
while $P Q$ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in \mathrm{PQ}$ and $w(v, u)<d_{u}$:
PQ. decreaseKey $(u, w(v, u))$ u. parent $=v$

PQ's key: weight of a single connecting edge

Dijkstra's SP Algorithm Implementation

1. Start with an empty tree T and add the source to T
2. Repeat $|V|-1$ times:

- Add the "nearest" node not yet in T to T

Implementation:
initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
each node also maintains a
parent, initially NULL set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:

$$
\begin{array}{ll}
\text { if } u \in \mathrm{PQ} \text { and } d_{v}+w(v, u)<d_{u}: & \text { PQ's key: length of shortest } \\
\text { PQ. decreaseKey }\left(u, d_{v}+w(v, u)\right) & \text { path } s \rightarrow u \text { using nodes in PQ } \\
u . \text { parent }=v &
\end{array}
$$ u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
$\mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Dijkstra's Algorithm Implementation

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:
if $u \in P Q$ and $d_{v}+w(v, u)<d_{u}$:
PQ. decreaseKey $\left(u, d_{v}+w(v, u)\right)$
u. parent $=v$

Every subpath of a shortest path is itself a shortest path (optimal substructure)

Observe: shortest paths from a source forms a tree, but not a minimum spanning tree

Dijkstra's Algorithm Running Time

Implementation:

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key set $d_{S}=0$
while $P Q$ is not empty:
$v=\mathrm{PQ}$. extractMin()
for each $u \in V$ such that $(v, u) \in E$:

$$
\text { if } u \in P Q \text { and } d_{v}+w(v, u)<d_{u} \text { : }
$$

$$
\operatorname{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)
$$

Initialization:

$$
O(|V|)
$$

$|V|$ iterations
$O(\log |V|)$
$2|E|$ iterations total
$O(\log |V|)$

$$
\text { u. parent }=v
$$

Overall running time: $O(|V| \log |V|+|E| \log |V|)=O(|E| \log |V|)$

Dijkstra's Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_{u}=\delta(s, u)$

- Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G
- Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Correctness of Dijkstra's Algorithm

Inductive hypothesis: Suppose that nodes $v_{1}=s, \ldots, v_{i}$ have been removed from PQ , and for each of them $d_{v_{i}}=\delta\left(s, v_{i}\right)$, and there is a path from s to v_{i} with distance $d_{v_{i}}$ (whenever $d_{v_{i}}<\infty$)

Base case:

- $i=0: v_{1}=s$
- Claim holds trivially

Correctness of Dijkstra's Algorithm: Claim 1

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G Proof:

- Suppose $d_{u}<\infty$
- This means that PQ. decreaseKey was invoked on node u on an earlier iteration
- Consider the last time PQ. decreaseKey is invoked on node u
- PQ. decreaseKey is only invoked when there exists an edge $(v, u) \in E$ and node v was extracted from PQ in a previous iteration
- In this case, $d_{u}=d_{v}+w(v, u)$
- By the inductive hypothesis, there is a path $s \rightarrow v$ of length d_{v} in G and since there is an edge $(v, u) \in E$, there is a path $s \rightarrow u$ of length d_{u} in G

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$
Extracted nodes define a cut $(S, V-S)$ of G

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes define a cut $(S, V-S)$ of G
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
& w(s, \ldots, u) \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& w(s, \ldots, u)=w(s, \ldots, x)+w(x, y)+w(y, \ldots, u) \\
& w(s, \ldots, x) \geq \delta(s, x) \text { since } \delta(s, x) \text { is weight of } \\
& \text { shortest path from } s \text { to } x
\end{aligned}
$$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes define a cut $(S, V-S)$ of G
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u)
\end{aligned}
$$

Inductive hypothesis: since x was extracted before, $d_{x}=\delta(s, x)$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes define a cut $(S, V-S)$ of G
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u)
\end{aligned}
$$

By construction of Dijkstra's algorithm, when x is extracted, d_{y} is updated to satisfy

$$
d_{y} \leq d_{x}+w(x, y)
$$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes define a cut $(S, V-S)$ of G
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u) \\
& \geq d_{u}+w(y, \ldots, u)
\end{aligned}
$$

Greedy choice property: we always extract the node of minimal distance so $d_{u} \leq d_{y}$

Correctness of Dijkstra's Algorithm: Claim 2

Let u be the $(i+1)^{\text {st }}$ node extracted
Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Extracted nodes define a cut $(S, V-S)$ of G
Take any path (s, \ldots, u)
Since $u \notin S,(s, \ldots, u)$ crosses the cut somewhere

- Let (x, y) be last edge in the path that crosses the cut

$$
\begin{aligned}
w(s, \ldots, u) & \geq \delta(s, x)+w(x, y)+w(y, \ldots, u) \\
& =d_{x}+w(x, y)+w(y, \ldots, u) \\
& \geq d_{y}+w(y, \ldots, u) \\
& \geq d_{u}+w(y, \ldots, u) \\
& \geq d_{u}
\end{aligned}
$$

Correctness of Dijkstra's Algorithm

Proof by induction

Proof Idea: we will show that when node u is removed from the priority queue, $d_{u}=\delta(s, u)$

- Claim 1: There is a path of length d_{u} (as long as $d_{u}<\infty$) from s to u in G
- Claim 2: For every path $(s, \ldots, u), w(s, \ldots, u) \geq d_{u}$

Breadth-First Search

Input: a graph G (weighted or unweighted) and a node s
Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, until all nodes have been visited
Output: BFS can be used to do many useful things, so lots of choices!

- Is the graph connected?
- Is there a path from s to u ?
- Smallest number of "hops" from s to u

Sounds like a "shortest path" property!
Notes: BFS doesn't use edge weights at all! Also, depth-first search (DFS) also similarly useful

Dijkstra's SP Algorithm

initialize $d_{v}=\infty$ for each node v
add all nodes $v \in V$ to the priority queue PQ , using d_{v} as the key
set $d_{s}=0$
while PQ is not empty:
$v=$ PQ. extractMin()
for each $u \in V$ such that $(v, u) \in E$:

$$
\begin{aligned}
& \text { if } u \in \mathrm{PQ} \text { and } d_{v}+w(v, u)<d_{u} \text { : } \\
& \quad \mathrm{PQ} . \operatorname{decreaseKey}\left(u, d_{v}+w(v, u)\right)
\end{aligned}
$$

u. parent $=v$

Breadth-First Search

initialize a flag $d_{v}=0$ for each node v
pick a start node s
Q. push(s)
while Q is not empty:

$$
v=\mathrm{Q} \cdot \operatorname{pop}() \text { and set } d_{v}=1
$$

$$
\begin{aligned}
& \text { if } d_{u}=0: \\
& \quad \text { Q. push }(u)
\end{aligned}
$$

flag to denote whether a node
has been visited or not

$$
\text { for each } u \in V \text { such that }(v, u) \in E \text { : }
$$

Key observation: replace the priority queue with a queue

Breadth-First Search: Time Complexity

initialize a flag $d_{v}=0$ for each node v
pick a start node s
Q. push(s)
while Q is not empty:
$v=\mathrm{Q} \cdot \operatorname{pop}()$ and set $d_{v}=1$
for each $u \in V$ such that $(v, u) \in E$:

$$
\text { if } d_{u}=0 \text { : }
$$

Q. push(u)

Initialization: $O(|V|)$
$|V|$ iterations
$2|E|$ iterations total

Overall running time: $O(|E|+|V|)$
The larger of $|E|$ and $|V|$. (For graphs, we call this "linear".)

BFS to Count Number of Hops

initialize a counter $d_{v}=\infty$ for each node v
pick a start node s and set $d_{s}=0$
Q. push(s)
while Q is not empty:
$v=Q \cdot \operatorname{pop}()$
for each $u \in V$ such that $(v, u) \in E$:

$$
\begin{aligned}
& \text { if } d_{u}=\infty: \\
& \quad \text { Q. } \operatorname{push}(u) \\
& \quad d_{u}=d_{v}+1
\end{aligned}
$$

counter to denote number of hops from the source

BFS Trees

Let's draw a BFS tree, a trace of its execution

- Number each node as visited
- Distance from start
- Tree edges vs non-tree edges

(Duplicated slide) BFS Trees

Let's draw a BFS tree, a trace of its execution

- Number each node as visited
- Distance from start

$$
d=\varnothing
$$

- Tree edges vs non-tree edges

same graph ID'd edge tat course cycles

Summary

Shortest path in weighted-graphs (single-source)

- Dijkstra's SP Algorithm
- Greedy algorithm
- Similar in structure to Prim's MST algorithm
- Priority queue ordered by distance from start (not connecting edge weight)

Unweighted graphs, number of "hops"

- Distance is number of edges (not sum of edge weights)
- Breadth-first Search (BFS)
- Not greedy. Doesn't used edge weights

BFS (and DFS) useful to solve many other graph problems

- Connectivity, find cycles,

