Today’s Keywords

* Graphs
 MaxFlow/MinCut
* Ford-Fulkerson

* Edmunds-Karp
CLRS Readings
 Chapter 25, 26

Railway map of Western USSR, 1955

low Network

Graph G = (V,E)

Source node s € IV
eV

Edge Capacities c(e) € Positive Real numbers

Max flow intuition: If s is a faucet, t is a drain, and s connects to ¢t
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?

2/2

—low

Assignment of values to edges
- f(e)=n
— Amount of water going through that pipe
Capacity constraint 0/1
— f(e) <c(e) 2/3
— Flow cannot exceed capacity
Flow constraint
— Vv eV —{s,t}, inflow(v) = outflow(v)
— inflow(v) = Yyev f (v, %)
— outflow(v) = Yyey f(x, V)
— Water going in must match water coming out
Flow of G: |f| = outflow(s) — inflow(s)

— Net outflow of s 3 in example above

1/2

Flow/Capacity

Vax Flow

e Of all valid flows through the graph, find the one which
maximizes:

— |f| = outflow(s) — inflow(s)

Greedy doesn’'t work

Saturate Highest Capacity Path First

10

20

Greedy doesn’'t work

Saturate Highest Capacity Path First

10

20

Greedy doesn’'t work

Saturate Highest Capacity Path First

Overall Flow: |f| = 20

Greedy doesn’'t work

Better Solution

Overall Flow: |f| = 30

Residual Graph G

* Keep track of net available flow along each edge
 “Forward edges”: weight is equal to available flow along that

edge in the flow graph Flow | could add

—w(e) =c(e) — f(e)

 “Back edges”: weight is equal to flow along that edge in the

flow graph Flow | could remove

—w(e) = f(e)
Residual Graph Gf

Flow Graph G /Q\

P
%3

b

Residual Graphs Example

Flow Graph Residual Graph

k

%ﬂ

-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network G
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

4 N
] Ford-Fulkerson approach: take
Ford-Fulkerson max-flow algorithm: any augmenting path
* Initialize f(e) = 0foralle € E (will revisit this later)

/
* Construct the residual network G V

* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

-ord-rFulkerson Algorithm

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

4 N
] Ford-Fulkerson approach: take
Ford-Fulkerson max-flow algorithm: any augmenting path
* Initialize f(e) = 0foralle € E (will revisit this later)

/
* Construct the residual network G V

* While there is an augmenting path p in Gf:{

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

(cr(u, v) is the weight of edge (u, v)
in the residual network Gy)

ord-rulkerson example

0/3 0/2

0/3
0131 o1

0/2 0/2 ¢

0/3
0/1

0/3

Initially: f(e) = Oforalle € E Residual graph G;

14

0/1

0/3

0/2

0/3

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

15

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

16

ord-

Jlkerson

Residual graph G

17

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

18

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

19

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

20

ord-

Jlkerson

Residual graph G

21

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

22

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

23

ord-

Jlkerson

Residual graph G

24

ord-

Jlkerson

—Xample

Increase flow by 1 unit

Residual graph G

25

ord-

Jlkerson

Residual graph G

26

2/3

S 0/3
2/2

0/1

Maximum flow: 4

ord-

Jlkerson

—Xample

No more augmenting paths

Residual graph G

27

—ord-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

* Initialize f(e) = 0foralle € E

e Construct the residual network Gf

. . . . Ti to find ti th:
* While there is an augmenting path pin Gf: Ime to Tind an augmenting pa

* Letc = min cf(u, v) Number of iterations of While loop:
U,VED fA
* Add c units of flow to G based on the augmenting path p

* Update the residual network G¢ for the updated flow

—ord-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from s — t in the residual
graph Gy (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

* Initialize f(e) = 0foralle € E

e Construct the residual network Gf

: : : : Time to find ti th: BFS: O(V + E
» While there is an augmenting path p in Gz e e V+E)

e letc = min ¢ (u v) Number of iterations of While loop: |f|
u,vep f ’
* Add c units of flow to G based on the augmenting path p @(E y ‘fD
29

* Update the residual network G¢ for the updated flow

Why might we loop [f| times”?

* Initialize f(e) = O0foralle € E
* Construct the residual network Gy
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VED f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G for the updated flow

30

Why might we loop [f| times”?

* Initialize f(e) = O0foralle € E
* Construct the residual network Gy
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VED f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G for the updated flow

31

Why might we loop [f| times”?

* Initialize f(e) = O0foralle € E
* Construct the residual network Gy
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VED f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G for the updated flow

32

Why might we loop [f| times”?

* Initialize f(e) = O0foralle € E
* Construct the residual network Gy
* While there is an augmenting path p in Gy:

e lLetc = min ce(u,v
U, VED f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G for the updated flow

Each time we increase flow by 1

Loop runs 200 times

33

Can We Avoid this?

 Edmonds-Karp Algorithm: choose augmenting path with
fewest hops

 Running time: @(min(|E||f*|, IV]IE|?)) = O(|V||E|%)

Edmonds-Karp max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network G
* While there is an augmenting path in Gy, let p be the path with fewest hops:

e Letc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Proof: See CLRS (Chapter 26.2)

34

Can We Avoid this?

 Edmonds-Karp Algorithm: choose augmenting path with
fewest hops
P 4 How to find this? N

 Running time: @(min(|E||f*|, [V||E|?))| uUse breadth-first search (8Fs):

Edmonds-Karp max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network G

* While there is an augmenting path in Gy, let p be the path with fewest hops:

e lLetc = min ce(u,v
U, VEP f()

* Add c units of flow to G based on the augmenting path p
* Update the residual network G for the updated flow

Edmonds-Karp = Ford-Fulkerson
_ using BFS to find augmenting path Y,

Proof: See CLRS (Chapter 26.2) 35

Showing Correctness of

* Consider cuts which separate s and
—letse S, tel,st.V=5UT

* Costofcut(S,7)=||S,T|

—Ord-

— Sum capacities of edges which go from S to T

— This example: 5

Jlkerson

36

Maxtlow<MInCut
* Max flow upper bounded by any cut separating s and

 Why? “Conservation of flow”
— All flow exiting s must eventually get to
— To get from s to ¢, all “tanks” must cross the cut

e Conclusion: If we find the minimum-cost cut, we’ve found the
maximum flow

—max|f| < min||S, T||
S

f S,T

Maxtlow/Mincut Theorem

e To show Ford-Fulkerson is correct:

— Show that when there are no more augmenting paths, there is a cut
with cost equal to the flow

* Conclusion: the maximum flow through a network matches the
minimum-cost cut

—max|f| = min ||S,T
ax|f| = min |15, 7]

* Duality

— When we’ve maximized max flow, we’ve minimized min cut (and vice-
versa), so we can check when we’ve found one by finding the other

—xample: Maxflow/Mincut

Flow Graph G Residual Graph Gf

No Augmenting Paths

ldea: When there are no more augmenting paths, there
exists a cut in the graph with cost matching the flow 39

2roof: Maxt
If |f is a max flow, then G¢

ow/Mincut Theorem

nas no augmenting path

— Otherwise, use that augmenting path to “push” more flow

Flow Graph G

2/2

Residual Graph Gf

40

2roof: Maxt
* If |f]is a max flow, then G¢

ow/Mincut Theorem

nas no augmenting path

— Otherwise, use that augmenting path to “push” more flow

 Define S = nodes reachable from source node s by positive-weight

edges in the residual graph
—T=V-=5

— S separates s, ¢ (otherwise there’s an augmenting path)

Flow Graph G

2/2

Residual Graph Gf

41

Proof: Maxtlow/Mincut Theorem

* To show: ||S,T|| = |f]|
— Weight of the cut matches the flow across the cut

* Consider edge (u,v)withu e S,veT
— f(u,v) = c(u,v), because otherwise w(u, v) > 0in G¢, which would meanv € §

* Consideredge (v, x)withyeT,x €S
— f(y,x) = 0, because otherwise the back edge w(y,x) > 0 in Gf, which would meanx € §

Flow Graph G Residual Graph Gf

y

2/2

N\

42

Proof Summary

The flow |f| of G is upper-bounded by the sum of capacities of edges crossing
any cut separating source s and sink

When Ford-Fulkerson terminates, there are no more augmenting paths in G¢

When there are no more augmenting paths in G¢ then we can define a cut
S = nodes reachable from source node s by p05|t|ve -weight edges in the
residual graph

The sum of edge capacities crossing this cut must match the flow of the graph

Therefore this flow is maximal

Other Maxflow algorithms

Ford-Fulkerson

- O(E|f])

Edmonds-Karp

- O(E*V)

Push-Relabel (Tarjan)

— O(EV?)

Faster Push-Relabel (also Tarjan)
- 0(V3)

