CS4102 Algorithms

Today's Keywords

- Graphs
- MaxFlow/MinCut
- Ford-Fulkerson
- Edmunds-Karp

CLRS Readings

- Chapter 25, 26

Railway map of Western USSR, 1955

Flow Network

Graph $G=(V, E)$
Source node $\underline{s} \in V$
Sink node $\underline{t} \in V$

Edge Capacities $c(e) \in$ Positive Real numbers

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

Flow

- Assignment of values to edges
$-f(e)=n$
- Amount of water going through that pipe
- Capacity constraint
- $f(e) \leq c(e)$

- Flow cannot exceed capacity
- Flow constraint
$-\forall v \in V-\{s, t\}, \operatorname{inflow}(v)=o u t f l o w(v)$
$-\operatorname{inflow}(v)=\sum_{x \in V} f(v, x)$
$-\operatorname{outflow}(v)=\sum_{x \in V} f(x, v)$
- Water going in must match water coming out
- Flow of $G:|f|=$ outflow $(s)-\operatorname{inflow}(s)$
- Net outflow of s
- Of all valid flows through the graph, find the one which maximizes:

$$
-|f|=\operatorname{outflow}(s)-\operatorname{inflow}(s)
$$

Greedy doesn't work

Saturate Highest Capacity Path First

Greedy doesn't work

Saturate Highest Capacity Path First

Greedy doesn't work

Saturate Highest Capacity Path First

Overall Flow: $|f|=20$

Greedy doesn't work

Better Solution

Overall Flow: $|f|=30$

Residual Graph G_{f}

- Keep track of net available flow along each edge
- "Forward edges": weight is equal to available flow along that edge in the flow graph
$-w(e)=c(e)-f(e)$
- "Back edges": weight is equal to flow along that edge in the flow graph

$$
-w(e)=f(e)
$$

Residual Graphs Example

Ford-Fulkerson Algorithm

Define an augmenting path to be a path from $s \rightarrow t$ in the residual graph G_{f} (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Ford-Fulkerson Algorithm

Define an augmenting path to be a path from $s \rightarrow t$ in the residual graph G_{f} (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path
Ford-Fulkerson max-flow algorithm:

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Ford-Fulkerson Algorithm

Define an augmenting path to be a path from $s \rightarrow t$ in the residual graph G_{f} (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path
Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
($c_{f}(u, v)$ is the weight of edge (u, v)
in the residual network G_{f})
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Ford-Fulkerson Example

Initially: $f(e)=0$ for all $e \in E$

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

No more augmenting paths

Maximum flow: 4
Residual graph G_{f}

Ford-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from $s \rightarrow t$ in the residual graph G_{f} (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$

Time to find an augmenting path: GFS
Number of iterations of While loop:

- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Ford-Fulkerson Algorithm - Runtime

Define an augmenting path to be a path from $s \rightarrow t$ in the residual graph G_{f} (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$

Time to find an augmenting path: BFS: $\Theta(V+E)$
Number of iterations of While loop: $|f|$

- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Why might we loop $|f|$ times?

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Why might we loop $|f|$ times?

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Why might we loop $|f|$ times?

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Why might we loop $|f|$ times?

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :

Each time we increase flow by 1

- Let $c=\min _{u, v \in p} \overparen{c_{f}(u, v)}$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- Running time: $\Theta\left(\min \left(\left|\underline{E\left|\mid f^{*}\right.}\right|, \mid \underline{\left.|V| E\right|^{2}}\right)\right)=O\left(|V||E|^{2}\right)$

Edmonds-Karp max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}

- While there is an augmenting path in G_{f}, let p be the path with fewest hops:
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- Running time: $\Theta\left(\min \left(\left|E \| f^{*}\right|,|V||E|^{2}\right)\right)$ Edmonds-Karp max-flow algorithm:
- Initialize $f(e)=0$ for all $e \in E$

How to find this?
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

- Construct the residual network G_{f}
- While there is an augmenting path in G_{f}, let p be the path with fewest hops:
- Let $c=\min _{u, v \in p} c_{f}(u, v)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Showing Correctness of Ford-Fulkerson

MinCut

- Consider cuts which separate s and t
- Let $s \in S, t \in T$, s.t. $V=S \cup T$
- Cost of cut $(S, T)=\|S, T\|$
- Sum capacities of edges which go from S to T - minimize
- This example: 5

Maxflow \leq MinCut

- Max flow upper bounded by any cut separating s and t
- Why? "Conservation of flow"
- All flow exiting s must eventually get to t
- To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow

$$
-\max _{f}|f| \leq \min _{S, T}\|S, T\|
$$

$$
\longrightarrow
$$

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
- Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut
$-\max _{f}|f|=\min _{S, T}| | S, T| |$
- Duality
- When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow

Proof: Maxflow/Mincut Theorem

- If $|f|$ is a max flow, then G_{f} has no augmenting path
- Otherwise, use that augmenting path to "push" more flow

Proof: Maxflow/Mincut Theorem

- If $|f|$ is a max flow, then G_{f} has no augmenting path
- Otherwise, use that augmenting path to "push" more flow
- Define $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
$-T=V-S$
- S separates s, t (otherwise there's an augmenting path)

Proof: Maxflow/Mincut Theorem

- To show: $||S, T||=|f|$
- Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S, v \in T$
- $f(u, v)=c(u, v)$, because otherwise $w(u, v)>0$ in G_{f}, which would mean $v \in S$
- Consider edge (y, x) with $y \in T, x \in S$
$-f(y, x)=0$, because otherwise the back edge $w(y, x)>0$ in G_{f}, which would mean $: S$

Proof Summary

1. The flow $|f|$ of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and $\operatorname{sink} t$

$$
s \longrightarrow t
$$

2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_{f}
3. When there are no more augmenting paths in G_{f} then we can define a cut $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
4. The sum of edge capacities crossing this cut must match the flow of the graph
5. Therefore this flow is maximal

$$
\operatorname{may} f l o u=\min C A
$$

Other Maxflow algorithms

- Ford-Fulkerson
$-\boldsymbol{\Theta}(\underline{E}|\boldsymbol{f}|)$
- Edmonds-Karp
$-\boldsymbol{\Theta}\left(\boldsymbol{E}^{2} \boldsymbol{V}\right)$
- Push-Relabel (Tarjan)
$-\Theta\left(E V^{2}\right)$
- Faster Push-Relabel (also Tarjan)
$-\Theta\left(V^{3}\right)$

