CS4102 Algorithms

Today's Keywords

- Graphs
- MaxFlow/MinCut
- Ford-Fulkerson
- Edmunds-Karp
 CLRS Readings
- Chapter 25, 26

Railway map of Western USSR, 1955

Flow Network

Graph G = (V, E)Source node $\underline{s} \in V$ Sink node $\underline{t} \in V$ Edge Capacities $c(e) \in Positive Real numbers$

Max flow intuition: If <u>s</u> is a faucet, <u>t</u> is a drain, and <u>s</u> connects to <u>t</u> through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

Assignment of values to edges

- -f(e)=n
- Amount of water going through that pipe

- Capacity constraint
 - $-f(e) \leq c(e)$
 - Flow cannot exceed capacity
- Flow constraint

$$\overline{\forall v \in V - \{s, t\}}, inflow(v) = outflow(v)$$

- $inflow(v) = \sum_{x \in V} f(v, x)$
- $outflow(v) = \sum_{x \in V} f(x, v)$
- Water going in must match water coming out
- Flow of G: |f| = outflow(s) inflow(s)
 - Net outflow of s

Flow/Capacity

3 in example above

Max Flow

• Of all valid flows through the graph, find the one which maximizes:

$$-|f| = outflow(s) - inflow(s)$$

Saturate Highest Capacity Path First

Saturate Highest Capacity Path First

Saturate Highest Capacity Path First

Overall Flow: |f| = 20

Better Solution

Overall Flow: |f| = 30

Residual Graph G_f

- Keep track of net available flow along each edge
- "Forward edges": weight is equal to available flow along that edge in the flow graph

$$-w(e) = c(e) - f(e)$$

"Back edges": weight is equal to flow along that edge in the flow graph

$$-w(e) = f(e)$$

Flow I *could* add

Flow I *could* remove

Residual Graphs Example

Ford-Fulkerson Algorithm

Define an **augmenting path** to be a path from $s \rightarrow t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Ford-Fulkerson Algorithm

Define an **augmenting path** to be a path from $s \rightarrow t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f:
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

Ford-Fulkerson Algorithm

Define an **augmenting path** to be a path from $s \rightarrow t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

 $(c_f(u, v) \text{ is the weight of edge } (u, v)$ in the residual network G_f)

Initially: f(e) = 0 for all $e \in E$

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

No more augmenting paths

Residual graph G_f

Maximum flow: 4

Ford-Fulkerson Algorithm - Runtime

Define an **augmenting path** to be a path from $s \rightarrow t$ in the residual graph G_f (using edges of non-zero weight)

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Time to find an augmenting path: GFS

Number of iterations of While loop: ?

Ford-Fulkerson Algorithm - Runtime

Define an **augmenting path** to be a path from $s \rightarrow t$ in the residual graph G_f (using edges of non-zero weight)

Time to find an augmenting path: BFS: $\Theta(V + E)$

Number of iterations of While loop: |f|

Overview: Repeatedly add the flow of any augmenting path

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add c units of flow to G based on the augmenting path p
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f:
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{u,v \in p} c_f(u,v)$

Each time we increase flow by 1

Loop runs 200 times

- Add *c* units of flow to *G* based on the augmenting path *p*
- Update the residual network G_f for the updated flow

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- **Running time:** $\Theta(\min(|\underline{E}||f^*|, |\underline{V}||\underline{E}|^2)) = O(|V||E|^2)$

Edmonds-Karp max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path in G_f , let p be the path with fewest hops:

O(MI.KET)

- Let $c = \min_{u,v \in p} c_f(u,v)$ if
- Add *c* units of flow to *G* based on the augmenting path *p*
- Update the residual network G_f for the updated flow

Proof: See CLRS (Chapter 26.2)

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- Running time: $\Theta(\min(|E||f^*|, |V||E|^2))$

Edmonds-Karp max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f

How to find this? Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

- While there is an augmenting path in G_f, let p be the path with fewest hops:
 - Let $c = \min_{u,v \in p} c_f(u,v)$
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Proof: See CLRS (Chapter 26.2)

Showing Correctness of Ford-Fulkerson

Consider cuts which separate s and t

- Let $s \in S$, $t \in T$, s.t. $V = S \cup T$

- Cost of cut (S, T) = ||S, T||
 - Sum capacities of edges which go from S to T minimize
 - This example: 5

Maxflow<MinCut

- Max flow upper bounded by any cut separating s and t
- Why? "Conservation of flow"

– All flow exiting *s* must eventually get to *t*

– To get from s to t, all "tanks" must cross the cut

 Conclusion: If we find the minimum-cost cut, we've found the maximum flow

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
 - Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$-\max_{f}|f| = \min_{S,T}||S,T||$$

- Duality
 - When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow

Proof: Maxflow/Mincut Theorem

- If |f| is a max flow, then G_f has no augmenting path
 - Otherwise, use that augmenting path to "push" more flow

40

Proof: Maxflow/Mincut Theorem

- If |f| is a max flow, then G_f has no augmenting path
 - Otherwise, use that augmenting path to "push" more flow
- Define S = nodes reachable from source node s by positive-weight edges in the residual graph T = V - S
 - -S separates s, t (otherwise there's an augmenting path)

41

Proof: Maxflow/Mincut Theorem

- To show: ||S, T|| = |f|
 - Weight of the cut matches the flow across the cut
- → Consider edge (u, v) with $u \in S$, $v \in T$

-f(u,v) = c(u,v), because otherwise w(u,v) > 0 in G_f , which would mean $v \in S$

• Consider edge (y, x) with $y \in T$, $x \in S$

- f(y, x) = 0, because otherwise the back edge w(y, x) > 0 in G_f , which would mean $\mathfrak{L} \in S$

42

Proof Summary

- 1. The flow |f| of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and sink t
- 2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_f

 $S \longrightarrow f$

- 3. When there are no more augmenting paths in G_f then we can define a cut S = nodes reachable from source node s by positive-weight edges in the residual graph
- 4. The sum of edge capacities crossing this cut must match the flow of the graph
- 5. Therefore this flow is maximal

May PLU = Min CA

Other Maxflow algorithms

- Ford-Fulkerson
 - $-\Theta(E|f|)$
- Edmonds-Karp
 - $-\Theta(E^2V)$
- Push-Relabel (Tarjan) $-\Theta(EV^2)$
- Faster Push-Relabel (also Tarjan) $-\Theta(V^3)$