CS4102 Algorithms

Today’s Keywords

* Reductions

* Bipartite Matching
* Vertex Cover

* Independent Set
CLRS Readings

* Chapter 34

Divide and Conquer”

:ili=

* Divide:
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
* Solve them directly (base case)

* Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

SO Tar

* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A,
relate it to smaller instances of Problem A

* Next:

— Take an instance of Problem A,
relate it to an instance of Problem B

—dge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

—dge-Disjoint

Patns

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3

—dge-Disjoint

Patns

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4

—dge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

Set of edge-disjoint paths of size 4

Max flow =4

Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to £ which share no vertices

Not a vertex-disjoint path!

11

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths

12

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to

outgoing edges
Compute Edge-Disjoint Paths on new graph

Restricts to 1

13

Maximum

Dog Lovers

Sipartite Matching

Dogs

ogiad

" A
) 2 25 ¢

~ T
«

14

Maximum

Dog Lovers

Sipartite Matching

Dogs

15

Maximum

Dog Lovers

Sipartite Matching

Dogs

16

Maximum Bipartite Matching

Given agraph G = (L,R, E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.

NVaximum Bipartite Matching Using Max

Make G = (L, R, E) a flow network G' = (V',E") by:
 Adding in a source and sink to the set of nodes:
— VI =LURU {s,t}
* Adding an edge from source to L and from R to
sink:
— E'=FEv{uel|(s,u)}uf{ver| i)}

* Make each edge capacity 1: x

— Ve€eE' cle) =1

—low

18

Vaximum

Sipartite Matching Using Max

1. Make G into G’
2. Compute Max Flow on G’

3. Return M as all “middle” edges with flow 1

- i
o
A
7 \ &
U ot
————
L
B |, 'ﬂa
1
~ |
%
&
.
4 A
5 §

—low

NVaximum Bipartite Matching Using Max

1. Make G into G ec+R)
2. Compute Max Flowon G' e v) |fl<L

3. Return M as all “middle” edges with flow 1 oew+r)

b TR e B
| avEy
Ll

—low

O(E - V)

20

Reqductions

e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

Reqductions

Shows how two different problems relate to each other

22

NMacGyver's

Problem we don’t know how to solve

Opening a door

23

NMacGyver's

Problem we don’t know how to solve Problem we do know how to solve

Opening a door Lighting a fire

B £ vl)
el)
?i&’ 8 .

24

NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire
U f
y ‘ (y"
ﬁ’ \\\“.‘\‘. v |
¥ S g |
PR P.%

25

NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

Vi ”.
‘}&/ \\\t‘ jl‘” J)
)\l \) \
MM} ﬂ%

Solution for B

Alcohol, wood,
matches

26

NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

Vi ”.
‘}&/ \\\t‘ jl‘” J)
)\l \) \
MM} ﬂ%

Put fire under the Keg

Solution for B

Alcohol, wood,
matches

27

NMacGyver's

Problem we don’t know how to solve

Opening a door

Solution for 4

Keg cannon
battering ram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

\(‘)
A \ '

\

,2‘) }
K

Put fire under the Keg

Solution for B

Alcohol, wood,
matches

28

NMacGyver's

Problem we don’t know how to solve Problem we do know how to solve
Opening a door : Lighting a fire
| Aim duct at door, b
insert keg B }, Ol)]
id\ . ’
LY SN
Solution for A
Solution for B
Keg cannon
battering ram Alcohol, wood,

_ matches
Put fire under the Keg ‘

Reduction

29

Sipartite Matching

Problem we don’t know how to solve

Bipartite Matchlng

Solution for 4

Problem we do know how to solve

Reduction

B

Max Flow

Fo@rson

Solution for B
4N,

30

Sipartite Matching

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching

Max Flow

B

Ford erson

Solution for B

Solution for 4

Must show (prove):
1) how to make construction

Reduction '
\1\2) Why it works

N General:

Problem we don’t know how to solve

Solution for 4

Map Instances of problem A to
Instances of B

Map Solutions of problem B to
Solutions of A

Reduction

Problem we do know how to solve

B

Using any Algorithm
for B

Solution for B

Y

32

N General:

Problem we don’t know how to solve

Solution for 4

Map Instances of problem A to
Instances of B

A

4 |)

Injective: any instance of A
can be mapped to some
instance of B.

. /
Map Solutions of problem B to
Solutions of A

Reduction

Problem we do know how to solve

B

Using any Algorithm
for B

Solution for B

Y

33

V\Vorst-case lower-nound

Opening a door

Alcohol, wood,
matches

reduces to
Problem A
vV cah be used
to make

Algorithm for B

PrOofs

Lighting a fire
% o \
% \\..\‘ :'.\ ’
B)‘{\ t 'y)
A ke 2V (O
Problem B

. battering ram
Algorithm for A}

Keg cannon

VWorst-case [ower-bound Proofs

Opening a door Lighting a fire
— |)
vy NIk)
reduces to B | Vb Q@%
Problem B |
Problem A
Alcohol, wood, Keg cannon
matches battering ram
' vV can be used
to make
Algorithm for B Algorithm for A

A is not a harder problem than B
A<B

VWorst-case [ower-bound Proofs

Opening a door Lighting a fire
& i)
reduces to B | Jei g }"
N\f";\‘ ‘/L
Problem B

Problem A

Alcohol, wood, Keg cannon
matches battering ram
Vv can be used
to make \
7 ’ [Algorithm for B Algorithm for A ‘

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X'is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

