CS4102 Algorithms

Today’s Keywords
* Reductions
* Bipartite Matching

CLRS Readings
* Chapter 34
h

Divide and Conquer”

:ili=

* Divide:
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
* Solve them directly (base case)

 Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

e How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

SO Tar

* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A,
relate it to smaller instances of Problem A

i NEXtZ @,e_éuu\\sqs

— Take an instance of Problem A,
relate it to an instance of Problem B

—dge-Disjoint

Patns

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths

from s to t which share no edges

«?\i}‘n—k ai‘?"(}

—dge-Disjoint Paths

Given a graph ¢ = (V,E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3

—dge-Disjoint

Patns

Given a graph ¢ = (V,E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4

——t®

—dge-Disjoint

~aths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

o('d"

> /1

——
PR

Set of edge-disjoint paths of size 4

Max flow = 4

Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to t which share no vertices

Not a vertex-disjoint path!

11

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths

12

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to
outgoing edges

Compute Edge-Disjoint Paths on new graph

Restricts to 1

13

Maximum

Dog Lovers

Sipartite Matching

Dogs

v,

14

Maximum

Dog Lovers

Sipartite Matching

Dogs

15

Maximum

Dog Lovers

Sipartite Matching

Dogs

16

Maximum Bipartite Matching

Given a graph G = (L,R, E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.

NVaximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G’ = (V', E") by:

Adding in a source and sink to the set of nodes:
— V' =LURU{s,t}

Adﬁing an edge from source to L and from R to

sink:

— E'=Eu{uel|(swlu{ver|(y1)
Make each edge capacity 1:
— Ve€eE, c(e) =1

|

18

NVaximum Bipartite Matching Using Max Flow

1. Make G into G OLlL+ ?)
2. Compute Max Flow on G ce-Oe-®) B(EN]
3. Return M as all “middle” edges with flow 1 (U/@

18] 2 win (L2

B TR

Pyt >
.- R
U A %)
(4 ;
. .
T
U VT
£
%
q‘ .

19

NVaximum Bipartite Matching Using Max

1. Make G intoG' e +R)
2. Compute Max Flowon G e v) |fl<L

PR

3. Return M as all “middle” edges with flow 1 ew+r)

5 e e

—low

O(E - V)

20

Seductions

* Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B

* Convert solution of problem B back to a solution of problem A

LReaductions

Shows how two different problems relate to each other

22

NMacGyver's

Problem we don’t know how to solve

Opening a door

23

NMacGyver's

Problem we don’t know how to solve Problem we do know how to solve

Opening a door Lighting a fire

b)]

B ? ‘\\\f\ | v’,'.\))
AN | & g

PR AR '}ﬁ

24

NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

)V
7 i

¥4

\("

e
A {

25

NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

)I

Solution for B

Alcohol, wood,
matches

26

NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

o

()
K

\(’A
b, T

Put fire under the Keg

Solution for B

Alcohol, wood,
matches

27

NMacGyver's

Problem we don’t know how to solve

Opening a door
: Aim duct at door,
insert keg

Solution for 4

Keg cannon

battering ram

Problem we do know how to solve

B

Lighting a fire

)

Put fire under the Keg

Solution for B

Alcohol, wood,
matches

28

NMacGyver's

Problem we don’t know how to solve Problem we do know how to solve
Opening a door : Lighting a fire
| Aim duct at door, 4
insert keg B ¥))]
ik Hia)
A Q’Nﬁ%
Solution for A
Solution for B
Keg cannon
battering ram Alcohol, wood,

. matches
Put fire under the Keg ‘

Reduction

29

Sipartite Matching

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching

Max Flow
/__’

B

‘_Sglution for B
A7 N,

Solution for A

Reduction 20

Sipartite Matching

Problem we don’t know how to solve

Problem we do know how to solve

Bipartite Mafg;_hing

B

Solution for A
>olution Tor 4

T “Reduction

Max Flow

S——

2

pove CXE

erson L L ke
CoaghnscXrns
1) oJ\\’ "o ka‘é

Ford

Solution for B

Must show (prove):

1) how to make construction

\1\2) Why it works

r\ —eﬂcL\ VROLU\

£ e Lo
Sn\\r por}-l(.()ss&é
WM onL ekt
- maYX -c(eq = oo
iprile m-H..\\\k

31

N General:

Problem we don’t know how to solve

Solution for 4

Map Instances of problem A to
Instances of B

Map Solutions of problem B to
Solutions of A

Reduction

Problem we do know how to solve

B

Using any Algorithm
for B

Solution for B

Y

32

N General:

Problem we don’t know how to solve

Solution for A

Map Instances of problem A to
Instances of B

A)
—2

\

\
~ p

Injective: any instance of A
/
can be mapped to some
instance of B.

. /
Map Solutions of problem B to
Solutions of 4

< —

Reduction

Problem we do know how to solve

B

—

Using any Algorithm
for B

Solution for B

Y

33

V\Vorst-case lower-nound

Opening a door

Alcohol, wood,
matches

A e doas (IS
reduces to
Problemé_
vV cah be used
to make
Algorithm for B

OJ(S &kj@r-lM'\f\ Con S< rd
I ‘SQYQQ rt\d"""-‘J "’rr A\

PrOofs

Lighting a fire

B

a4)
K4

ProbIem_B_

. battering ram
Algorithm for A}

Keg cannon

V\Vorst-case lower-nound

Opening a door

Alcohol, wood,
matches

reduces to

Problem A

Y

Algorithm for B

PrOofs

Lighting a fire

B

VA
¥ ’l\ (

& a1d)
i

§
N “.'/\

A

Problem B

cah be used
to make
Algorithm for A

. battering ram

Keg cannon

A is not a harder problem than B

A<B

VWorst-case lower-bound Proofs

Opening a door Lighting a fire
B | ! £ 478)
reduces to N .'}f
A ul
Problem B

Problem A

Alcohol, wood, Keg cannon
matches battering ram
Vv can be used
to make N
/- Algorithm for B Algorithm for A £

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y jis slow

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

Proof of Lower Bound by Reduction

To Show@s slow

1. We know X is slow (by a proof)
(e.g., X'=some way to open the door)

2. Assume@s quick [toward contradiction]
(Y = some way to light a fire)

Proof of Lower Bound by Reduction

To Show: Y is slow

//-_

1. We know X is slow (by a proof)
(e.g., X'='some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

\1@3 + av dock & ’Qm

3. Show how to useéo perform X quickly

-~ e Proof of Lower Bound by Reduction

To Show: Y is slow

ﬁ
—

(C aw‘(ur'\oﬁ Q ‘5"45

1. We know X is slow (by a proof) — Serhny L
(e.g., X = some way to open the door) Oty
2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)
- W& \(A &r-l

3. Show how to use Y to perform X quickly ~ ™ &~)

4. X is slow, but Y could be used to perform X quickly
——————— . - : -
conclusion: Y must not actually be quick

