CS4102 Algorithms

Today’s Keywords
* Reductions
* Bipartite Matching

CLRS Readings
* Chapter 34
h



Divide and Conquer”
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* Divide:
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
* Solve them directly (base case)

 Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4




Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first



Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

e How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain



SO Tar

* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A,
relate it to smaller instances of Problem A
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— Take an instance of Problem A,
relate it to an instance of Problem B




—dge-Disjoint

Patns

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths

from s to t which share no edges
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—dge-Disjoint Paths

Given a graph ¢ = (V,E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3



—dge-Disjoint

Patns

Given a graph ¢ = (V,E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4
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—dge-Disjoint

~aths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.
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Set of edge-disjoint paths of size 4

Max flow = 4



Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices




Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to t which share no vertices

Not a vertex-disjoint path!
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Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths
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Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to
outgoing edges

Compute Edge-Disjoint Paths on new graph

Restricts to 1
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Maximum

Dog Lovers

Sipartite Matching

Dogs

v,
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Maximum

Dog Lovers

Sipartite Matching

Dogs
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Maximum

Dog Lovers

Sipartite Matching

Dogs
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Maximum Bipartite Matching

Given a graph G = (L,R, E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.



NVaximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G’ = (V', E") by:

Adding in a source and sink to the set of nodes:
— V' =LURU{s,t}

Adﬁing an edge from source to L and from R to

sink:

— E'=Eu{uel|(swlu{ver|(y1)
Make each edge capacity 1:
— Ve€eE, c(e) =1

|
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NVaximum Bipartite Matching Using Max Flow

1. Make G into G OLlL+ ?)
2. Compute Max Flow on G ce-Oe-®)  B(EN]
3. Return M as all “middle” edges with flow 1 (U/@
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NVaximum Bipartite Matching Using Max

1. Make G intoG' e +R)
2. Compute Max Flowon G e v) |fl<L

PR

3. Return M as all “middle” edges with flow 1 ew+r)
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Seductions

* Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B

* Convert solution of problem B back to a solution of problem A




LReaductions

Shows how two different problems relate to each other
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NMacGyver's

Problem we don’t know how to solve

Opening a door
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NMacGyver's

Problem we don’t know how to solve Problem we do know how to solve

Opening a door Lighting a fire
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NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire
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NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

)I

Solution for B

Alcohol, wood,
matches
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NMacGyver's

Problem we don’t know how to solve

Opening a door

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire
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Put fire under the Keg

Solution for B

Alcohol, wood,
matches
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NMacGyver's

Problem we don’t know how to solve

Opening a door
: Aim duct at door,
insert keg

Solution for 4

Keg cannon

battering ram

Problem we do know how to solve

B

Lighting a fire

)

Put fire under the Keg

Solution for B

Alcohol, wood,
matches

28




NMacGyver's

Problem we don’t know how to solve Problem we do know how to solve
Opening a door : Lighting a fire
| Aim duct at door, 4
insert keg B ¥ ) ) ]
ik Hia )
A Q’Nﬁ%
Solution for A
Solution for B
Keg cannon
battering ram Alcohol, wood,

. matches
Put fire under the Keg ‘

Reduction
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Sipartite Matching

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching

Max Flow
/__’

B

‘_Sglution for B
A7 N,

Solution for A

Reduction 20




Sipartite Matching

Problem we don’t know how to solve

Problem we do know how to solve

Bipartite Mafg;_hing

B

Solution for A
>olution Tor 4

T “Reduction

Max Flow
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Solution for B

Must show (prove):

1) how to make construction

\1\2) Why it works
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N General:

Problem we don’t know how to solve

Solution for 4

Map Instances of problem A to
Instances of B

Map Solutions of problem B to
Solutions of A

Reduction

Problem we do know how to solve

B

Using any Algorithm
for B

Solution for B

Y
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N General:

Problem we don’t know how to solve

Solution for A

Map Instances of problem A to
Instances of B

A )
—2
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Injective: any instance of A
/
can be mapped to some
instance of B.

. /
Map Solutions of problem B to
Solutions of 4

< —

Reduction

Problem we do know how to solve

B

—

Using any Algorithm
for B

Solution for B

Y
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V\Vorst-case lower-nound

Opening a door

Alcohol, wood,
matches

A e doas (IS
reduces to
Problemé_
vV cah be used
to make
Algorithm for B
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Lighting a fire

B
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. battering ram
Algorithm for A}

Keg cannon




V\Vorst-case lower-nound

Opening a door

Alcohol, wood,
matches

reduces to

Problem A

Y

Algorithm for B

PrOofs

Lighting a fire

B
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A

Problem B

cah be used
to make
Algorithm for A

. battering ram

Keg cannon

A is not a harder problem than B

A<B




VWorst-case lower-bound Proofs

Opening a door Lighting a fire
B | ! £ 478 )
reduces to N .'}f
A ul
Problem B

Problem A

Alcohol, wood, Keg cannon
matches battering ram
Vv can be used
to make N
/- Algorithm for B Algorithm for A £

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making




Proof of Lower Bound by Reduction

To Show: Y jis slow




Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)




Proof of Lower Bound by Reduction

To Show@s slow

1. We know X is slow (by a proof)
(e.g., X'=some way to open the door)

2. Assume@s quick [toward contradiction]
(Y = some way to light a fire)




Proof of Lower Bound by Reduction

To Show: Y is slow

//-_

1. We know X is slow (by a proof)
(e.g., X'='some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

\1@3 + av dock & ’Qm

3. Show how to useéo perform X quickly




-~ e Proof of Lower Bound by Reduction

To Show: Y is slow

ﬁ
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1. We know X is slow (by a proof) —  Serhny L
(e.g., X = some way to open the door) Oty
2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)
- W& \( A &r-l

3. Show how to use Y to perform X quickly ~ ™ &~ )

4. X is slow, but Y could be used to perform X quickly
——————— . - : -
conclusion: Y must not actually be quick




