

$\frac{\text{Warm up}}{\text{Show } \log(n!)} = \Theta(n \log n)$

Hint: show
$$n! \le n^n$$

Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n! = O(n \log n)$

$$n! \le n^{n}$$

$$\Rightarrow \log(n!) \le \log(n^{n})$$

$$\Rightarrow \log(n!) \le n \log n$$

$$\Rightarrow \log(n!) = O(n \log n)$$

Today's Keywords

- Divide and Conquer
- Quicksort
- Decision Tree
- Worst case lower bound
- Sorting

CLRS Readings

- Chapter 7
- Chapter 8

Homeworks

- HW4 due 11pm Thursday, February 27, 2020
 - Divide and Conquer and Sorting
 - Written (use LaTeX!)
 - Submit BOTH a pdf and a zip file (2 separate attachments)
- Regrade Office Hours
 - Fridays 2:30pm-3:30pm (Rice 210)
 - 2 weeks for HWO regrades

Aside: Divide and Conquer

Generic Divide and Conquer Solution

def **myDCalgo**(problem): if baseCase(problem): solution = solve(problem) #brute force if necessary return solution subproblems[] = Divide(problem) for subproblem in subproblems: subsolutions.append(myDCalgo(subproblem)) solution = Combine(subsolutions) return solution

Generic Divide and Conquer Solution

MergeSort Divide and Conquer Solution

```
def mergesort(list):
```

```
if list.length < 2:
      return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)
for list in {listL, listR}:
      sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)
return solution
```

MergeSort Divide and Conquer Solution

Back to Sorting!

Quicksort

- Idea: pick a pivot element, recursively sort two sublists around that element
- Divide: select an element *p*, Partition(*p*)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Quicksort

- Idea: pick a pivot element using Quickselect + Median of Medians, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Guaranteed Quicksort

Using Quickselect, with a Median-of-Medians partition:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$
$$T(n) = \Theta(n\log n)$$

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
- Approach has very large constants
 If you really want Θ(n log n), better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

Quicksort Run Time

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$$

Quicksort Run Time

 $T(n) = \Theta(n \log n)$

Quicksort Run Time

If the pivot is always d^{th} order statistic:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by d each time T(n) = T(n - d) + n $T(n) = O(n^2)$

d is not a fraction of *n*

What's the probability of this occurring?

Probability of n^2 run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest:
$$\frac{d}{n}$$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivots are among d smallest:

$$\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2d} \cdot \dots \cdot \frac{d}{2d} \cdot 1 = \frac{1}{\left(\frac{n}{d}\right)!}$$

21

Random Pivot

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely
 - Other options: Median of 5

- Remember, run time counts comparisons!
- Quicksort only compares against a pivot
 - Element *i* only compared to element *j* if one of them was the pivot

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all > p on right

5	7	3	1	2	4	6	8	12	10	9	11

What is the probability of comparing two given elements?

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Consider the sorted version of the list

Observation: Adjacent elements must be compared

- Why? Otherwise I would not know which came first
- Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements <u>always</u> end up in same sublist, unless one is the pivot

What is the probability of comparing two given elements?

Consider the sorted version of the list

$$Pr[we compare 1 and 12] = \frac{2}{12}$$

Assuming pivot is chosen uniformly at random

Only compared if 1 or 12 was chosen as the first pivot since otherwise they are in <u>different</u> sublists

What is the probability of comparing two given elements?

Case 1: Pivot contained in [i + 1, ..., j - 1]Then *i* and *j* are in different sublists and will <u>never</u> be compared

 $\Pr[\text{we compare } i \text{ and } j] = 0$

What is the probability of comparing two given elements?

Case 2: Pivot is either *i* or *j* Then we will always compare *i* and *j*

 $\Pr[\text{we compare } i \text{ and } j] = 1$

Probability of comparing *i* with j (j > i):

dependent on the number of elements between (and including)
 i and *j*

$$\frac{2}{j-i+1}$$

Expected number of comparisons for Quicksort:

$$\sum_{i < j} \frac{2}{j - i + 1}$$

Expected number of comparisons:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} < 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}$$
Substitution:

$$\frac{1}{k+1} < \frac{1}{k}$$
Harmonic series:

$$\sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

$$= 2 \sum_{i=1}^{n-1} \Theta(\log n) = \Theta(n \log n)$$

Quicksort overall: expected $\Theta(n \log n)$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 2 are chosen as pivot (these will always be compared)

Sum so far:
$$\frac{2}{2}$$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 3 are chosen as pivot (but never if 2 is ever chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3}$$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 4 are chosen as pivot (but never if 2 or 3 are chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4}$$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Compared if 1 or 12 are chosen as pivot (but never if 2 -> 11 are chosen)

Overall sum:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n}$$

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

When
$$i = 1$$
:
 $2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right) < 2\left[\sum_{x=1}^{n} \frac{1}{x}\right] \quad O(\log n)$

n terms overall in the outer sum

Quicksort overall: expected $O(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$
 - Quicksort $O(n \log n)$
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than O(n log n)
 - Every algorithm, in the worst case, must have a certain lower bound
- Non-existence proof!
 - Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

