CS4102 Algorithms

Spring 2020

Warm up

Show log(n!) = O(nlogn)

Hint: show n! < n"
n
2

Hint 2: show n! > (%)

logn! = O(nlogn)

nNn=n-n-1))-n—-2)-..-2-1

| N\ N\ N N
n=n- n . n -.omn-n

n! <n"

= log(n!) < log(n™)
= log(n!) < nlogn

= log(n!) = O(nlogn)

logn! = Q(nlogn) ~
- _ A

n
n=n-mn-1) (n—2)-...-5.(§—1) 2.1
V V V 1 \/ VAN
n
n\z n n n n
@=z3 7 w7 1 -ll
— — R N iV e
'>(n)g /'\/LL '\/2.
=12
n\a
= log(n!) = log <(§))
n n
= log(n!) = —logz

= log(n!) = Q(nlogn)

Today's Keywords

* Divide and Conquer

* Quicksort

* Decision Tree

* Worst case lower bound
* Sorting

CLRS Readings

* Chapter 7
* Chapter 8

HomMeworks

e HW4 due 11pm Thursday, February 27, 2020

— Divide and Conquer and Sorting

— Written (use LaTeX!)

— Submit BOTH a pdf and a zip file (2 separate attachments)
* Regrade Office Hours

— Fridays 2:30pm-3:30pm (Rice 210)

— 2 weeks for HWO regrades

Generic Divide and Conguer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)
return solution

subproblems[] = Divide(problem)

for subproblem in subproblems:
subsolutions.append(myDCalgo(subproblem))

solution = Combine(subsolutions)

return solution

Generic Divide and Conguer Solution

MergeSort Divide and Conguer Solution

def mergesort(list):
if list.length < 2:
return list
{listL, listR} = Divide_by median(list)
for list in {listL, listR}:
sortedSublLists.append(mergesort(list))
solution = merge(sortedL, sortedR)

return solution

10

MergeSort Divide and Conguer Solution

II Sorted II

SortedL SortedR

11

* |dea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select an element p, Partition(p)
* Conquer: recursively sort left and right sublists

* Combine: Nothing!

13

* |dea: pick a pivot element using Quickselect + Median of
Medians, recursively sort two sublists around that element

* Divide: select an element p, Partition(p)
* Conquer: recursively sort left and right sublists
* Combine: Nothing!

14

Guaranteed Quicksort

Using Quickselect, with a Median-of-Medians partition:

e[[rof]]

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time

T(n) = 2T (g) + o)

T(n) = O(nlogn)

15

IS It worth it”?

* Using Quickselect to pick median guarantees ®(nlogn) run
time
* Approach has very large constants
— If you really want ©(n logn), better off using MergeSort
* Better approach: Random pivot
— Very small constant (very fast algorithm)

— Expected to run in ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

16

Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

17

n
T(n) =T(E)+T(1_O)+n
n n
n
‘4\ 9n/10
n/10 + 9n/10 n
m_%/mo —T7/100~ 817/100

n/100| + 9n/100| + 9n/100 + 81n/100 n

1

1

|

On

>10g(

10

)Tl

Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

T(n) = O(nlogn)

19

Quicksort Run Time

If the pivot is always d™" order statistic:

_

Tm)=T(n—-d)+n fraction of n
T(n) = 0(n?) d
What'’s the probability of this occurring?

Then we shorten by d each time i[d is not a :

20

Probability of n# run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: —
n

d

Probability second pivot is among d smallest: ¥
n —

Probability all pivots are among d smallest:
d d d d 1
n n—d n—2d =~ 2d ()|

21

Random Pivot

* Using Quickselect to pick median guarantees ®(nlogn) run
time
— Approach has very large constants
— If you really want ©(n logn), better off using MergeSort

* Better approach: Random pivot

— Very small constant (very fast algorithm)

— Expected to run in ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

— Other options: Median of 5

22

~ormal Argument for nlogn Average

* Remember, run time counts comparisons!

* Quicksort only compares against a pivot

— Element i only compared to element j if one of
them was the pivot

23

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

24

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared

— Why? Otherwise | would not know which came first
— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 2

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

E uniformly at random

Prlwe compare 1 and 12] = 2 L Assuming pivot is chosen }

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

26

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

123456.8910 11 | 12

l' J

Case 1: Pivot containedin[i + 1, ...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiandj] = 0

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1234.678910 11 | 12

l' J

Case 2: Pivot is either i or j
Then we will always compare i and j

Pr[we compareiandj] =1

~ormal Argument for nlogn Average

Probability of comparing i with j (j > i):

— dependent on the number of elements between (and including)
[and j
2
j—i+1

Expected number of comparisons for Quicksort:

2
n—1 n
2 j—i+1 A 2
t<J Z Z j—i+1

29

~ormal Argument for nlogn Average

Expected number of comparisons:

n-1 n n—1 n—i n—1 n—i n-1 n
IPIFESED DUCHE R REN
(o Ly j—i+1 _ZZk+1 < k k
=1 j=1+1 i=1 k=1 i=1 k=1 i=1 k=1

k
Substit.utio.n: L < L a Harmonic $
k=j—1i k+1 k n o
Z r = O(logn)
. k=1

/

n-1
= 2 z O(logn) = B(nlogn)
i=1

Quicksort overall: expected O@(nlogn)

30

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

2
Sum so far:E

31

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

2 2
Sum so far:z + 3

32

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

2 2 2
Sumso far:—=+ -+ -
2 3 4

33

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

Overallsum: 2+ 24+ 2424 ... 42
2 3 4 5 n

34

EXpected number of Comparisons

n-1 n
> >
=1 j=i+1] =

Wheni = 1:

2(%+%+%+---+%)<2 zn:% O(logn)

x=1

n terms overall in the outer sum

Quicksort overall: expected O(nlogn)

35

Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn)
— Quicksort O(nlogn)

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort 0(n?)

— Heapsort O(nlogn)

Can we do better than O(nlogn)?

36

Worst Case [Lower Bounds

* Prove that there is no algorithm which can sort faster than
O(nlogn)
— Every algorithm, in the worst case, must have a certain lower bound

* Non-existence proof!
— Very hard to do

37

Strategy: Decision Tree

e Sorting algorithms use comparisons to figure out the order of input
elements

* Draw tree to illustrate all possible execution paths

Possible Result of

execution path comparison

>or<?

[>0or<?][>0or<?][>or<?] : [>0or<?] >or<?][>0or<? [>or<?

Permutation

[5,2,4,1,3]] [54,3211] of sorted list

[[1,2,3,4,5]] [[2,1,3,4,5]]

38

Strategy: Decision Tree

* Worst case run time is the longest execution path

* i.e., “height” of the decision tree

log(n!) =
O(nlogn)

Possible
execution path

>or<?

Result of

comparison

[>or<?][>or<?][>or<?] " [>0or<?] >or<?][>or<? [>or<?

[[1,2,3,4,5]] [[2,1,3,4,5]]

| 524131 | -

—

\

| 154321 |

J

|
n! Possible permutations

Permutation
of sorted list

39

Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is @(nlogn)

— There is no (comparison-based) sorting algorithm with run time

o(nlogn)
Possible Result of
— execution path comparison
<
< >or<?
log(n!)"[>or<?][>or<?][>or<?] . [>or<?] >or<?][>or<? [>or<?
O(nlogn)
(2345) (21345 | - | 524131 | ~ | 54321 | E?Z:riteztiﬁsz

\)
|

n! Possible permutations

40

