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log 𝑛! = 𝑂 𝑛 log 𝑛
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⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! = 𝑂(𝑛 log 𝑛)
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Today’s Keywords

• Divide and Conquer
• Quicksort
• Decision Tree
• Worst case lower bound
• Sorting
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CLRS Readings

• Chapter 7
• Chapter 8
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Homeworks

• HW4 due 11pm Thursday, February 27, 2020
– Divide and Conquer and Sorting
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Regrade Office Hours
– Fridays 2:30pm-3:30pm (Rice 210)
– 2 weeks for HW0 regrades
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Aside: Divide and Conquer
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Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems[] = Divide(problem)
for subproblem in subproblems:

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution
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Generic Divide and Conquer Solution
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MergeSort Divide and Conquer Solution

def mergesort(list):
if list.length < 2:

return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)
for list in {listL, listR}:

sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)
return solution
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MergeSort Divide and Conquer Solution

11

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

SortedL SortedR

Sorted



Back to Sorting!
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Quicksort

• Idea: pick a pivot element, recursively sort two sublists around 
that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!
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Quicksort

• Idea: pick a pivot element using Quickselect + Median of 
Medians, recursively sort two sublists around that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!
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Guaranteed Quicksort

Then we divide in half each time
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2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ Θ(𝑛)

Using Quickselect, with a Median-of-Medians partition:

𝑇 𝑛 = Θ(𝑛 log 𝑛)



Is it worth it?

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run 
time

• Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely
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Quicksort Run Time
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Quicksort Run Time
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If the pivot is always +
BC

th order statistic:

𝑇 𝑛 = Θ(𝑛 log 𝑛)



Quicksort Run Time

Then we shorten by 𝑑 each time
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1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

𝑇 𝑛 = 𝑂(𝑛-)
What’s the probability of this occurring?

𝑑 is not a 
fraction of 𝑛



Probability of 𝑛- run time

We must consistently select pivot from within the first 𝑑 terms
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Random Pivot

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run 
time
– Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

– Other options: Median of 5
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Formal Argument for 𝑛 log 𝑛 Average

• Remember, run time counts comparisons!
• Quicksort only compares against a pivot
– Element 𝑖 only compared to element 𝑗 if one of 

them was the pivot
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Partition (Divide step)

Given: a list, a pivot value 𝑝
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8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11



Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?
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1 2 3 4 5 6 7 8 9 10 11 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
– Why?
– Every sorting algorithm must compare adjacent elements

Otherwise I would not know which came first

In quicksort: adjacent elements always end up in 
same sublist, unless one is the pivot



Formal Argument for 𝑛 log 𝑛 Average
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1 2 3 4 5 6 7 8 9 10 11 12

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2
12

Assuming pivot is chosen 
uniformly at random

What is the probability of comparing two given elements?



Case 1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
Then 𝑖 and 𝑗 are in different sublists and will never be 
compared

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

What is the probability of comparing two given elements?



Case 2: Pivot is either 𝑖 or 𝑗
Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

What is the probability of comparing two given elements?



Formal Argument for 𝑛 log 𝑛 Average

Probability of comparing 𝑖 with 𝑗 (𝑗 > 𝑖):
– dependent on the number of elements between (and including) 
𝑖 and 𝑗

2
𝑗 − 𝑖 + 1

Expected number of comparisons for Quicksort:

[
\]^

2
𝑗 − 𝑖 + 1
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Formal Argument for 𝑛 log 𝑛 Average
Expected number of comparisons:
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Substitution:
𝑘 = 𝑗 − 𝑖
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Quicksort overall: expected Θ 𝑛 log 𝑛
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Expected number of Comparisons
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Consider when 𝑖 = 1

Sum so far: -
-

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot 
(these will always be compared)

[
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+
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𝑗 − 𝑖 + 1



Expected number of Comparisons
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Consider when 𝑖 = 1

Sum so far: -
-
+ -

d

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot 
(but never if 2 is ever chosen)
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𝑗 − 𝑖 + 1



Expected number of Comparisons
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Consider when 𝑖 = 1

Sum so far: -
-
+ -

d
+ -

e

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 4 are chosen as pivot 
(but never if 2 or 3 are chosen)
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𝑗 − 𝑖 + 1



Expected number of Comparisons
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Consider when 𝑖 = 1

Overall sum: -
-
+ -

d
+ -

e
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f
+ ⋯+ -

+

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot 
(but never if 2 -> 11 are chosen)
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Expected number of Comparisons
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When 𝑖 = 1:   
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𝑛 terms overall in the outer sum

Quicksort overall: expected O 𝑛 log 𝑛



Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort
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𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛-)

𝑂(𝑛-)

Can we do better than 𝑂(𝑛 log 𝑛)?



Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than 
𝑂(𝑛 log 𝑛)
– Every algorithm, in the worst case, must have a certain lower bound

• Non-existence proof!
– Very hard to do
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Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the order of input 

elements
• Draw tree to illustrate all possible execution paths
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Strategy: Decision Tree
• Worst case run time is the longest execution path
• i.e., “height” of the decision tree
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Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is Θ(𝑛 log 𝑛)

– There is no (comparison-based) sorting algorithm with run time 
𝑜(𝑛 log 𝑛)
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