
Warm up
Show log 𝑛! = Θ(𝑛 log 𝑛)

Hint: show 𝑛! ≤ 𝑛+

Hint 2: show 𝑛! ≥ +
-

.
/

1

Spring 2020

2

log 𝑛! = 𝑂 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1

𝑛+ = 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ … ⋅ 𝑛 ⋅ 𝑛

= < < < <

𝑛! ≤ 𝑛+
⇒ log 𝑛! ≤ log 𝑛+

⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! = 𝑂(𝑛 log 𝑛)

3

log 𝑛! = Ω 𝑛 log 𝑛
𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅

𝑛
2
⋅
𝑛
2
− 1 ⋅ … ⋅ 2 ⋅ 1

𝑛
2

+
- =

𝑛
2
⋅

𝑛
2

⋅
𝑛
2

⋅ … ⋅
𝑛
2
⋅ 1 ⋅ … ⋅ 1 ⋅ 1

> > > >=

𝑛! ≥
𝑛
2

+
-

⇒ log 𝑛! ≥ log
𝑛
2

+
-

⇒ log 𝑛! ≥
𝑛
2
log

𝑛
2

⇒ log 𝑛! = Ω(𝑛 log 𝑛)

> =

Today’s Keywords

• Divide and Conquer
• Quicksort
• Decision Tree
• Worst case lower bound
• Sorting

4

CLRS Readings

• Chapter 7
• Chapter 8

5

Homeworks

• HW4 due 11pm Thursday, February 27, 2020
– Divide and Conquer and Sorting
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Regrade Office Hours
– Fridays 2:30pm-3:30pm (Rice 210)
– 2 weeks for HW0 regrades

6

Aside: Divide and Conquer

7

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems[] = Divide(problem)
for subproblem in subproblems:

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution

8

Generic Divide and Conquer Solution

9

𝑛

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

…𝑛
𝑏-

𝑛
𝑏-

𝑛
𝑏-

𝑛
𝑏-

… … … … … …

1 1 1 1 1 1 1…

…

… …

S
1

S
1

S
1

Solution

MergeSort Divide and Conquer Solution

def mergesort(list):
if list.length < 2:

return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)
for list in {listL, listR}:

sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)
return solution

10

MergeSort Divide and Conquer Solution

11

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

SortedL SortedR

Sorted

Back to Sorting!

12

Quicksort

• Idea: pick a pivot element, recursively sort two sublists around
that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

13

Quicksort

• Idea: pick a pivot element using Quickselect + Median of
Medians, recursively sort two sublists around that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

14

Guaranteed Quicksort

Then we divide in half each time

15

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ Θ(𝑛)

Using Quickselect, with a Median-of-Medians partition:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Is it worth it?

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run
time

• Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

16

Quicksort Run Time

17

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

If the pivot is always +
BC

th order statistic:

𝑛

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

⁄𝑛 10 ⁄9𝑛 10

⁄𝑛 100 ⁄9𝑛 100 ⁄9𝑛 100 ⁄81𝑛 100

… … … …

1
1

1
1

𝑛

𝑛/10 9𝑛/10

𝑛/100 9𝑛/100 9𝑛/100 81𝑛/100

1

1
1

1

𝑛

𝑛

𝑛

+

+ + +

+

+
+

log BC
F
𝑛

Quicksort Run Time

19

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

If the pivot is always +
BC

th order statistic:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time

Then we shorten by 𝑑 each time

20

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

𝑇 𝑛 = 𝑂(𝑛-)
What’s the probability of this occurring?

𝑑 is not a
fraction of 𝑛

Probability of 𝑛- run time

We must consistently select pivot from within the first 𝑑 terms

21

Probability first pivot is among 𝑑 smallest:

Probability second pivot is among 𝑑 smallest:

Probability all pivots are among 𝑑 smallest:
𝑑
𝑛
⋅

𝑑
𝑛 − 𝑑

⋅
𝑑

𝑛 − 2𝑑
⋅ … ⋅

𝑑
2𝑑

⋅ 1 =
1
𝑛
𝑑 !

𝑑
𝑛

𝑑
𝑛 − 𝑑

Random Pivot

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run
time
– Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

– Other options: Median of 5

22

Formal Argument for 𝑛 log 𝑛 Average

• Remember, run time counts comparisons!
• Quicksort only compares against a pivot
– Element 𝑖 only compared to element 𝑗 if one of

them was the pivot

23

Partition (Divide step)

Given: a list, a pivot value 𝑝

24

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

25

1 2 3 4 5 6 7 8 9 10 11 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
– Why?
– Every sorting algorithm must compare adjacent elements

Otherwise I would not know which came first

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot

Formal Argument for 𝑛 log 𝑛 Average

26

1 2 3 4 5 6 7 8 9 10 11 12

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2
12

Assuming pivot is chosen
uniformly at random

What is the probability of comparing two given elements?

Case 1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
Then 𝑖 and 𝑗 are in different sublists and will never be
compared

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

What is the probability of comparing two given elements?

Case 2: Pivot is either 𝑖 or 𝑗
Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

What is the probability of comparing two given elements?

Formal Argument for 𝑛 log 𝑛 Average

Probability of comparing 𝑖 with 𝑗 (𝑗 > 𝑖):
– dependent on the number of elements between (and including)
𝑖 and 𝑗

2
𝑗 − 𝑖 + 1

Expected number of comparisons for Quicksort:

[
\]^

2
𝑗 − 𝑖 + 1

29

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1

Formal Argument for 𝑛 log 𝑛 Average
Expected number of comparisons:

30

Substitution:
𝑘 = 𝑗 − 𝑖

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1 = [
_B

+`B

[
c_B

+`\
2

𝑘 + 1
< 2[

_B

+`B

[
c_B

+`\
1
𝑘
< 2[

_B

+`B

[
c_B

+
1
𝑘

1
𝑘 + 1 <

1
𝑘

= 2[
_B

+`B

Θ(log 𝑛) = Θ 𝑛 log 𝑛

Quicksort overall: expected Θ 𝑛 log 𝑛

Harmonic series:

[
c_B

+
1
𝑘
= Θ(log 𝑛)

Expected number of Comparisons

31

Consider when 𝑖 = 1

Sum so far: -
-

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

32

Consider when 𝑖 = 1

Sum so far: -
-
+ -

d

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

33

Consider when 𝑖 = 1

Sum so far: -
-
+ -

d
+ -

e

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

34

Consider when 𝑖 = 1

Overall sum: -
-
+ -

d
+ -

e
+ -

f
+ ⋯+ -

+

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

35

When 𝑖 = 1:

2
1
2
+
1
3
+
1
4
+⋯+

1
𝑛

< 2 [
i_B

+
1
𝑥

O(log 𝑛)

[
_B

+`B

[
^_\aB

+
2

𝑗 − 𝑖 + 1

𝑛 terms overall in the outer sum

Quicksort overall: expected O 𝑛 log 𝑛

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

36

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛-)

𝑂(𝑛-)

Can we do better than 𝑂(𝑛 log 𝑛)?

Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than
𝑂(𝑛 log 𝑛)
– Every algorithm, in the worst case, must have a certain lower bound

• Non-existence proof!
– Very hard to do

37

Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the order of input

elements
• Draw tree to illustrate all possible execution paths

38

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

Strategy: Decision Tree
• Worst case run time is the longest execution path
• i.e., “height” of the decision tree

39

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is Θ(𝑛 log 𝑛)

– There is no (comparison-based) sorting algorithm with run time
𝑜(𝑛 log 𝑛)

40

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

