

#### Warm Up

# How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:



With these?



# How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:



$$Tile(n) = Tile(n-1) + Tile(n-2)$$

Tile(0) = Tile(1) = 1



### Homeworks

- HW4 due 11pm Thursday, February 27, 2020
  - Divide and Conquer and Sorting
  - Written (use LaTeX!)
  - Submit BOTH a pdf and a zip file (2 separate attachments)
- Midterm: March 4
- Regrade Office Hours
  - Fridays 2:30pm-3:30pm (Rice 210)

# Today's Keywords

- Maximum Sum Continuous Subarray
- Domino Tiling
- Dynamic Programming
- Log Cutting

# CLRS Readings

- Chapter 15
  - Section 15.1, Log/Rod cutting, optimal substructure property
    - Note: r<sub>i</sub> in book is called Cut() or C[] in our slides. We use their example.
  - Section 15.3, More on elements of DP, including optimal substructure property
  - Section 15.2, matrix-chain multiplication (later example)
  - Section 15.4, longest common subsequence (even later example)

### Maximum Sum Contiguous Subarray Problem

The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a  $O(n \log n)$  algorithm for finding the maximum-sum subarray.





Return the Max of Left, Right, Center



# Divide and Conquer Summary

#### • Divide

- Break the list in half

#### • Conquer

Find the best subarrays on the left and right

#### Combine

- Find the best subarray that "spans the divide"
- I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

### Generic Divide and Conquer Solution

def **myDCalgo**(problem): if baseCase(problem): solution = solve(problem) #brute force if necessary return solution subproblems = Divide(problem) for sub in subproblems: subsolutions.append(myDCalgo(sub)) solution = Combine(subsolutions) return solution

#### def MSCS(list):

```
if list.length < 2:
      return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:
      subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution
```

# Divide and Conquer Summary

Typically multiple subproblems. Typically all roughly the same size.

- Divide
  - Break the list in half
- Conquer
  - Find the best subarrays on the left and right
- Combine
  - Find the best subarray that "spans the divide"
  - I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

# Types of "Divide and Conquer"

- Divide and Conquer
  - Break the problem up into several subproblems of roughly equal size, recursively solve
  - E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
  - Break the problem into a single smaller subproblem, recursively solve
  - E.g. Batman, Quickselect, Binary Search

### Pattern So Far

- Typically looking to divide the problem by some fraction (½, ¼ the size)
- Not necessarily always the best!
  - Sometimes, we can write faster algorithms by finding unbalanced divides.
  - Chip and Conquer



# Chip (Unbalanced Divide) and Conquer

#### • Divide

- Make a subproblem of all but the last element

- Conquer
  - Find Best Subarray (sum) on the Left (BSL(n-1))
  - Find the **B**est subarray Ending at the **D**ivide (BED(n-1))

#### • Combine

- New Best Ending at the Divide:
  - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New Best Subarray (sum) on the Left:
  - $BSL(n) = \max(BSL(n-1), BED(n))$







Find Largest sum ending at the divide BED(n) = BED(n-1) + arr[n] = 0 + arr[n] = 22











# Chip (Unbalanced Divide) and Conquer

#### • Divide

- Make a subproblem of all but the last element

- Conquer
  - Find Best Subarray (sum) on the Left (BSL(n-1))
  - Find the **B**est subarray Ending at the **D**ivide (BED(n-1))

#### • Combine

- New Best Ending at the Divide:
  - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New Best Subarray (sum) on the Left:
  - $BSL(n) = \max(BSL(n-1), BED(n))$

### Was unbalanced better? YES

- Old:
  - We divided in Half
  - We solved 2 different problems:
    - Find the best overall on BOTH the left/right
    - Find the best which end/start on BOTH the left/right respectively
  - Linear time combine
- New:
  - We divide by 1, n-1
  - We solve 2 different problems:
    - Find the best overall on the left ONLY
    - Find the best which ends on the left ONLY
  - Constant time combine

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

 $T(n) = \Theta(n \log n)$ 

$$T(n) = \mathbf{1}T(n-1) + \mathbf{1}$$

$$T(n) = \Theta(n)$$

### MSCS Problem - Redux

- Solve in O(n) by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"



Best ending here 12



Best ending here 25

### End of Midterm Exam Materials!



"Mr. Osborne, may I be excused? My brain is full."

# Back to Tiling

# How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:



$$Tile(n) = Tile(n-1) + Tile(n-2)$$

$$Tile(0) = Tile(1) = 1$$



### How to compute Tile(n)?

Tile(n): if n < 2: return 1 return Tile(n-1)+Tile(n-2)

Problem?

### Recursion Tree



Better way: Use Memory!

### Computing Tile(n) with Memory

Initialize Memory M Μ Tile(n): 0 if n < 2: 1 return 1 2 if M[n] is filled: 3 return M[n] 4 M[n] = Tile(n-1)+Tile(n-2)5 return M[n] 6

Technique: "memoization" (note no "r")

### Computing Tile(n) with Memory - "Top Down"

```
Initialize Memory M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```



# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
  - 1. Identify recursive structure of the problem
    - What is the "last thing" done?





# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
  - 1. Identify the recursive structure of the problem
    - What is the "last thing" done?
  - 2. Save the solution to each subproblem in memory

### Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
 solution = solve(problem)

return solution for subproblem of problem: # After dividing subsolutions.append(myDCalgo(subproblem)) solution = Combine(subsolutions)

return solution

### Generic Top-Down Dynamic Programming Soln

 $mem = \{\}$ def **myDPalgo**(problem): if mem[problem] not blank: return mem[problem] if baseCase(problem): solution = solve(problem) mem[problem] = solution return solution for subproblem of problem: subsolutions.append(myDPalgo(subproblem)) solution = OptimalSubstructure(subsolutions) mem[problem] = solution return solution

## Computing Tile(n) with Memory - "Top Down"

```
Initialize Memory M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```



Recursive calls happen in a predictable order

### Better Tile(n) with Memory - "Bottom Up"

```
Tile(n):
     Initialize Memory M
     M[0] = 1
     M[1] = 1
     for i = 2 to n:
          M[i] = M[i-1] + M[i-2]
     return M[n]
```



# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
  - 1. Identify the recursive structure of the problem
    - What is the "last thing" done?
  - 2. Save the solution to each subproblem in memory
  - 3. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest

# More on Optimal Substructure Property

- Detailed discussion on CLRS p. 379
  - If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Examples (we'll see these come up later):
  - True for coin-changing
  - True for single-source shortest path
  - True for knapsack problem

# Log Cutting

Given a log of length nA list (of length n) of prices P(P[i]) is the price of a cut of size i) Find the best way to cut the log



Select a list of lengths  $\ell_1, ..., \ell_k$  such that:  $\sum \ell_i = n$ to maximize  $\sum P[\ell_i]$  Brute Force:  $O(2^n)$ 

### Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
  - Select the most profitable cut first



### Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
  - Select the "most bang for your buck"
    - (best price / length ratio)



# Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
  - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
  - "Top Down": Solve each recursively
  - "Bottom Up": Iteratively solve smallest to largest

### 1. Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n  $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ Cut(0) + P[n] $Cut(n-\ell_k)$  $\ell_k$ best way to cut a log of length  $n - \ell_k$ Last Cut