

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:

With these?

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$$Tile(n) = Tile(n-1) + Tile(n-2)$$

Tile(0) = Tile(1) = 1

Homeworks

- HW4 due 11pm Thursday, February 27, 2020
 - Divide and Conquer and Sorting
 - Written (use LaTeX!)
 - Submit BOTH a pdf and a zip file (2 separate attachments)
- Midterm: March 4
- Regrade Office Hours
 - Fridays 2:30pm-3:30pm (Rice 210)

Today's Keywords

- Maximum Sum Continuous Subarray
- Domino Tiling
- Dynamic Programming
- Log Cutting

CLRS Readings

- Chapter 15
 - Section 15.1, Log/Rod cutting, optimal substructure property
 - Note: r_i in book is called Cut() or C[] in our slides. We use their example.
 - Section 15.3, More on elements of DP, including optimal substructure property
 - Section 15.2, matrix-chain multiplication (later example)
 - Section 15.4, longest common subsequence (even later example)

Maximum Sum Contiguous Subarray Problem

The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Return the Max of Left, Right, Center

Divide and Conquer Summary

• Divide

- Break the list in half

• Conquer

Find the best subarrays on the left and right

Combine

- Find the best subarray that "spans the divide"
- I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

def **myDCalgo**(problem): if baseCase(problem): solution = solve(problem) #brute force if necessary return solution subproblems = Divide(problem) for sub in subproblems: subsolutions.append(myDCalgo(sub)) solution = Combine(subsolutions) return solution

def MSCS(list):

```
if list.length < 2:
      return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:
      subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution
```

Divide and Conquer Summary

Typically multiple subproblems. Typically all roughly the same size.

- Divide
 - Break the list in half
- Conquer
 - Find the best subarrays on the left and right
- Combine
 - Find the best subarray that "spans the divide"
 - I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Types of "Divide and Conquer"

- Divide and Conquer
 - Break the problem up into several subproblems of roughly equal size, recursively solve
 - E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
 - Break the problem into a single smaller subproblem, recursively solve
 - E.g. Batman, Quickselect, Binary Search

Pattern So Far

- Typically looking to divide the problem by some fraction (½, ¼ the size)
- Not necessarily always the best!
 - Sometimes, we can write faster algorithms by finding unbalanced divides.
 - Chip and Conquer

Chip (Unbalanced Divide) and Conquer

• Divide

- Make a subproblem of all but the last element

- Conquer
 - Find Best Subarray (sum) on the Left (BSL(n-1))
 - Find the **B**est subarray Ending at the **D**ivide (BED(n-1))

• Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New Best Subarray (sum) on the Left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Find Largest sum ending at the divide BED(n) = BED(n-1) + arr[n] = 0 + arr[n] = 22

Chip (Unbalanced Divide) and Conquer

• Divide

- Make a subproblem of all but the last element

- Conquer
 - Find Best Subarray (sum) on the Left (BSL(n-1))
 - Find the **B**est subarray Ending at the **D**ivide (BED(n-1))

• Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New Best Subarray (sum) on the Left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Was unbalanced better? YES

- Old:
 - We divided in Half
 - We solved 2 different problems:
 - Find the best overall on BOTH the left/right
 - Find the best which end/start on BOTH the left/right respectively
 - Linear time combine
- New:
 - We divide by 1, n-1
 - We solve 2 different problems:
 - Find the best overall on the left ONLY
 - Find the best which ends on the left ONLY
 - Constant time combine

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

 $T(n) = \Theta(n \log n)$

$$T(n) = \mathbf{1}T(n-1) + \mathbf{1}$$

$$T(n) = \Theta(n)$$

MSCS Problem - Redux

- Solve in O(n) by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"

Best ending here 12

Best ending here 25

End of Midterm Exam Materials!

"Mr. Osborne, may I be excused? My brain is full."

Back to Tiling

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$$Tile(n) = Tile(n-1) + Tile(n-2)$$

$$Tile(0) = Tile(1) = 1$$

How to compute Tile(n)?

Tile(n): if n < 2: return 1 return Tile(n-1)+Tile(n-2)

Problem?

Recursion Tree

Better way: Use Memory!

Computing Tile(n) with Memory

Initialize Memory M Μ Tile(n): 0 if n < 2: 1 return 1 2 if M[n] is filled: 3 return M[n] 4 M[n] = Tile(n-1)+Tile(n-2)5 return M[n] 6

Technique: "memoization" (note no "r")

Computing Tile(n) with Memory - "Top Down"

```
Initialize Memory M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```


Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
 solution = solve(problem)

return solution for subproblem of problem: # After dividing subsolutions.append(myDCalgo(subproblem)) solution = Combine(subsolutions)

return solution

Generic Top-Down Dynamic Programming Soln

 $mem = \{\}$ def **myDPalgo**(problem): if mem[problem] not blank: return mem[problem] if baseCase(problem): solution = solve(problem) mem[problem] = solution return solution for subproblem of problem: subsolutions.append(myDPalgo(subproblem)) solution = OptimalSubstructure(subsolutions) mem[problem] = solution return solution

Computing Tile(n) with Memory - "Top Down"

```
Initialize Memory M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```


Recursive calls happen in a predictable order

Better Tile(n) with Memory - "Bottom Up"

```
Tile(n):
     Initialize Memory M
     M[0] = 1
     M[1] = 1
     for i = 2 to n:
          M[i] = M[i-1] + M[i-2]
     return M[n]
```


Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

More on Optimal Substructure Property

- Detailed discussion on CLRS p. 379
 - If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Examples (we'll see these come up later):
 - True for coin-changing
 - True for single-source shortest path
 - True for knapsack problem

Log Cutting

Given a log of length nA list (of length n) of prices P(P[i]) is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_1, ..., \ell_k$ such that: $\sum \ell_i = n$ to maximize $\sum P[\ell_i]$ Brute Force: $O(2^n)$

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the most profitable cut first

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the "most bang for your buck"
 - (best price / length ratio)

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ Cut(0) + P[n] $Cut(n-\ell_k)$ ℓ_k best way to cut a log of length $n - \ell_k$ Last Cut