
Warm Up
How many ways are there to tile a 2×𝑛 board with 

dominoes?
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How many ways to 
tile this:

With these?

Spring 2020
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How many ways are there to tile 
a 2×𝑛 board with dominoes?

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1



Homeworks

• HW4 due 11pm Thursday, February 27, 2020
– Divide and Conquer and Sorting
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Midterm: March 4
• Regrade Office Hours
– Fridays 2:30pm-3:30pm (Rice 210)
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Today’s Keywords

• Maximum Sum Continuous Subarray
• Domino Tiling
• Dynamic Programming
• Log Cutting
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CLRS Readings

• Chapter 15
– Section 15.1, Log/Rod cutting, optimal substructure property
• Note: ri in book is called Cut() or C[] in our slides.  We use their example.

– Section 15.3, More on elements of DP, including optimal substructure 
property

– Section 15.2, matrix-chain multiplication (later example)
– Section 15.4, longest common subsequence (even later example)
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Maximum Sum Contiguous Subarray Problem

The maximum-sum subarray of a given array of integers 𝐴 is the 
interval [𝑎, 𝑏] such that the sum of all values in the array 
between 𝑎 and 𝑏 inclusive is maximal. 
Given an array of 𝑛 integers (may include both positive and 
negative values), give a 𝑂(𝑛 log 𝑛) algorithm for finding the 
maximum-sum subarray.

6



Divide and Conquer Θ(𝑛 log 𝑛)
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
Recursively 

Solve on Right



Divide and Conquer Θ(𝑛 log 𝑛)
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum 
that ends here

+ Largest sum 
that starts here



Divide and Conquer Θ(𝑛 log 𝑛)
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of 
Left, Right, Center

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛



Divide and Conquer Summary

• Divide
– Break the list in half

• Conquer
– Find the best subarrays on the left and right

• Combine
– Find the best subarray that “spans the divide”
– I.e. the best subarray that ends at the divide concatenated with the 

best that starts at the divide



Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution
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MSCS Divide and Conquer Θ(𝑛 log 𝑛)

def MSCS(list):
if list.length < 2:

return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:

subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution
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Divide and Conquer Summary

• Divide
– Break the list in half

• Conquer
– Find the best subarrays on the left and right

• Combine
– Find the best subarray that “spans the divide”
– I.e. the best subarray that ends at the divide concatenated with the 

best that starts at the divide

Typically multiple subproblems.
Typically all roughly the same size.



Types of “Divide and Conquer”

• Divide and Conquer
– Break the problem up into several subproblems of roughly equal size, 

recursively solve
– E.g. Karatsuba, Closest Pair of Points, Mergesort…

• Decrease and Conquer
– Break the problem into a single smaller subproblem, recursively solve
– E.g. Batman, Quickselect, Binary Search



Pattern So Far

• Typically looking to divide the problem by some fraction 
(½, ¼ the size)

• Not necessarily always the best!
– Sometimes, we can write faster algorithms by finding unbalanced

divides.
– Chip and Conquer



Divide and Conquer Θ(𝑛 log 𝑛)

16

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum 
that ends here

+ Largest sum 
that starts here



Chip (Unbalanced Divide) and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find Best Subarray (sum) on the Left (𝐵𝑆𝐿(𝑛 − 1))
– Find the Best subarray Ending at the Divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
– New Best Subarray (sum) on the Left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Recursively 
Solve on Left
𝑩𝑺𝑳(𝒏 − 𝟏) Find Largest 

sum ending at 
the divide
𝑩𝑬𝑫(𝒏 − 𝟏)

Divide
𝒏 − 𝟏



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Recursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
0

Divide
𝒏 − 𝟏



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide
𝒏 − 𝟏

Recursively Solve on Left
𝑩𝑺𝑳(𝒏) = 𝑩𝑺𝑳(𝒏 − 𝟏) = 𝟐𝟓

Find Largest sum ending at the divide
𝑩𝑬𝑫 𝒏 = 𝑩𝑬𝑫 𝒏 − 𝟏 + 𝒂𝒓𝒓 𝒏 = 𝟎 + 𝒂𝒓𝒓[𝒏] = 𝟐𝟐



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the divide
25



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the divide
17



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the divide
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

13 Find Largest 
sum ending at 

the divide
12



Chip (Unbalanced Divide) and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find Best Subarray (sum) on the Left (𝐵𝑆𝐿(𝑛 − 1))
– Find the Best subarray Ending at the Divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
– New Best Subarray (sum) on the Left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



Was unbalanced better?

• Old:
– We divided in Half
– We solved 2 different problems:

• Find the best overall on BOTH the left/right
• Find the best which end/start on BOTH the left/right respectively

– Linear time combine
• New:
– We divide by 1, n-1
– We solve 2 different problems:

• Find the best overall on the left ONLY 
• Find the best which ends on the left ONLY

– Constant time combine

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇 𝑛 = 1𝑇 𝑛 − 1 + 1

𝑇 𝑛 = Θ(𝑛 log 𝑛)

𝑇 𝑛 = Θ(𝑛)

YES



MSCS Problem - Redux

• Solve in 𝑂(𝑛) by increasing the problem size by 1 each time.
• Idea: Only include negative values if the positives on both sides 

of it are “worth it”



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13



Θ(𝑛) Solution

31

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 9



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 12



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19



Θ(𝑛) Solution

34

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 4



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 14



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 0



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 17



Θ(𝑛) Solution
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5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25



End of Midterm Exam Materials!
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Back to Tiling

40



41

How many ways are there to tile 
a 2×𝑛 board with dominoes?

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1



How to compute 𝑇𝑖𝑙𝑒(𝑛)?
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Tile(n):
if n < 2:

return 1
return Tile(n-1)+Tile(n-2)

Problem?



Recursion Tree
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Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2P)



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

M

0

1

2

3

4

5

6

Technique: “memoization” (note no “r”)



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller 

ones
• Idea:

1. Identify recursive structure of the problem
• What is the “last thing” done?

46𝑛 − 1 𝑛 − 2



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller 

ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory

47



Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem:    # After dividing

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution
48



Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution
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Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”

50

Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Recursive calls happen in a predictable order



Better 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”
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Tile(n):
Initialize Memory M
M[0] = 1
M[1] = 1
for i = 2 to n:

M[i] = M[i-1] + M[i-2]
return M[n]

M

0

1

2

3

4

5

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the (optimal) solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem

• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

52



More on Optimal Substructure Property

• Detailed discussion on CLRS p. 379
– If A is an optimal solution to a problem, then the components of A 

are optimal solutions to subproblems

• Examples (we’ll see these come up later):
– True for coin-changing
– True for single-source shortest path
– True for knapsack problem
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Log Cutting

54

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖) 
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓS, … , ℓU such that:
∑ℓW = 𝑛

to maximize ∑𝑃[ℓW] Brute Force: 𝑂(2P)



Greedy won’t work

55

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

• Greedy algorithms (next unit) build a solution by picking the 
best option “right now”
– Select the most profitable cut first



Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the 
best option “right now”
– Select the “most bang for your buck” 
• (best price / length ratio)

56

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1

Profit: 51

Better: Lengths: 2, 4
Profit: 54

50

6



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify Recursive Structure
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𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓU
𝐶𝑢𝑡(𝑛 − ℓU)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖


