
Spring 2020

Warm Up

How many arithmetic operations are required to multiply
a 𝑛×𝑚 Matrix with a 𝑚×𝑝 Matrix?

(don’t overthink this)

1

𝑛

𝑚

𝑚

𝑝

×

Warm Up

• 𝑚 multiplications and additions per element
• 𝑛 ⋅ 𝑝 elements to compute
• Total cost: 𝑚 ⋅ 𝑛 ⋅ 𝑝 2

𝑛

𝑚

𝑚

𝑝

𝑛

𝑝

× =

How many arithmetic operations are required to multiply
a 𝑛×𝑚 Matrix with a 𝑚×𝑝 Matrix?

(don’t overthink this)

Homeworks

• HW4 due 11pm Thursday, February 27, 2020
– Divide and Conquer and Sorting
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Midterm: March 4
• Regrade Office Hours
– Fridays 2:30pm-3:30pm (Rice 210)

3

Midterm

• Wednesday, March 4 in class
– SDAC: Please schedule with SDAC for Wednesday
– Mostly in-class with a (required) take-home portion

• Practice Midterm available on Collab Friday
• Review Session
– Details by email soon

4

Today’s Keywords

• Dynamic Programming
• Log Cutting
• Matrix Chaining

5

CLRS Readings

• Chapter 15
– Section 15.1, Log/Rod cutting, optimal substructure property
• Note: ri in book is called Cut() or C[] in our slides. We use their example.

– Section 15.3, More on elements of DP, including optimal substructure
property

– Section 15.2, matrix-chain multiplication
– Section 15.4, longest common subsequence (later example)

6

Log Cutting

7

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ,, … , ℓ/ such that:
∑ℓ1 = 𝑛

to maximize ∑𝑃[ℓ1] Brute Force: 𝑂(25)

Greedy won’t work

8

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

• Greedy algorithms (next unit) build a solution by picking the
best option “right now”
– Select the most profitable cut first

Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the
best option “right now”
– Select the “most bang for your buck”
• (best price / length ratio)

9

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1

Profit: 51

Better: Lengths: 2, 4
Profit: 54

50

6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

10

1. Identify Recursive Structure

11

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ/
𝐶𝑢𝑡(𝑛 − ℓ/)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

12

3. Select a Good Order for Solving Subproblems

13

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 0 = 0

0

3. Select a Good Order for Solving Subproblems

14

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 1 = 𝐶𝑢𝑡 0 + 𝑃[1]

1

3. Select a Good Order for Solving Subproblems

15

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 2 = max 𝐶𝑢𝑡 1 + 𝑃 1
𝐶𝑢𝑡 0 + 𝑃 2

2

3. Select a Good Order for Solving Subproblems

16

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 3 = max 𝐶𝑢𝑡 2 + 𝑃 1
𝐶𝑢𝑡 1 + 𝑃 2
𝐶𝑢𝑡 0 + 𝑃[3]

3

3. Select a Good Order for Solving Subproblems

17

10987654321Length:

𝐶𝑢𝑡(𝑖): 0

0

Solve Smallest subproblem first

𝐶𝑢𝑡 4 = max

𝐶𝑢𝑡 3 + 𝑃[1]
𝐶𝑢𝑡 2 + 𝑃 2
𝐶𝑢𝑡 1 + 𝑃 3
𝐶𝑢𝑡 0 + 𝑃[4]

4

Log Cutting Pseudocode

18

Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n: // log size

best = 0
for j = 1 to i: // last cut

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]
Run Time: 𝑂(𝑛E)

How to find the cuts?

• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack

19

Remember the choice made

20

Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size
of the last cut

Reconstruct the Cuts

21

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621

Example to demo
Choices[] only.
Profit of 20 is not
optimal!

Backtracking Pseudocode

i = n
while i > 0:

print Choices[i]
i = i – Choices[i]

22

Our Example: Getting Optimal Solution

i 0 1 2 3 4 5 6 7 8 9 10
C[i] 0 1 5 8 10 13 17 18 22 25 30

Choice[i] 0 1 2 3 2 2 6 1 2 3 10

23

• If n were 5
• Best score is 13
• Cut at Choice[n]=2, then cut at

Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
• If n were 7
• Best score is 18
• Cut at 1, then cut at 6

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

24

Matrix Chaining

25

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I𝑟I

𝑐I

× × 𝑟J

𝑐J

• Given a sequence of Matrices (𝑀,, … ,𝑀5), what is the most
efficient way to multiply them?

𝑀E 𝑀J

Order Matters!

• 𝑀,×𝑀E ×𝑀I
– uses 𝑐, ⋅ 𝑟, ⋅ 𝑐E + cE ⋅ 𝑟, ⋅ 𝑐I operations

26

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I
𝑟I

𝑐I

×𝑀E

𝑟,

𝑐E

𝑐, = 𝑟E
𝑐E = 𝑟I

Order Matters!

• 𝑀,×(𝑀E×𝑀I)
– uses c, ⋅ r, ⋅ 𝑐I + (cE ⋅ 𝑟E ⋅ 𝑐I) operations

27

𝑟E

𝑐I

𝑐, = 𝑟E
𝑐E = 𝑟I

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I
𝑟I

𝑐I

×𝑀E

Order Matters!

• 𝑀,×𝑀E ×𝑀I
– uses 𝑐, ⋅ 𝑟, ⋅ 𝑐E + cE ⋅ 𝑟, ⋅ 𝑐I operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• 𝑀,×(𝑀E×𝑀I)
– uses 𝑐, ⋅ 𝑟, ⋅ 𝑐I + (cE ⋅ 𝑟E ⋅ 𝑐I) operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160

28

𝑐, = 𝑟E
𝑐E = 𝑟I

𝑐, = 10
𝑐E = 20
𝑐I = 8
𝑟, = 7
𝑟E = 10
𝑟I = 20

𝑀, = 7×10
𝑀E = 10×20
𝑀I = 20×8

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

29

1. Identify the Recursive Structure of the Problem

30

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I𝑟I

𝑐I

× × 𝑟J

𝑐J

𝑀E 𝑀J

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀, through 𝑀5

1. Identify the Recursive Structure of the Problem

31

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I𝑟I

𝑐I

× × 𝑟J

𝑐J

𝑀E 𝑀J

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀, through 𝑀5

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟,𝑟E𝑐J

𝑐J

𝑟E

1. Identify the Recursive Structure of the Problem

32

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I𝑟I

𝑐I

× × 𝑟J

𝑐J

𝑀E 𝑀J

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀, through 𝑀5

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟,𝑟E𝑐J

𝑐J

𝑟I

𝑐E

𝑟,

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟,𝑟I𝑐J

1. Identify the Recursive Structure of the Problem

33

𝑀,𝑟,

𝑐,

𝑟E×

𝑐E

𝑀I𝑟I

𝑐I

× × 𝑟J

𝑐J

𝑀E 𝑀J

𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀, through 𝑀5

𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟,𝑟E𝑐J

𝑐I

𝑟,

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟,𝑟I𝑐J
𝐵𝑒𝑠𝑡 1,3 + 𝑟,𝑟J𝑐J

1. Identify the Recursive Structure of the Problem

• In general:

34

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀1 through 𝑀W

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟,𝑟E𝑐5
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟,𝑟I𝑐5
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟,𝑟J𝑐5
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟,𝑟X𝑐5
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟,𝑟5𝑐5

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

35

2. Save Subsolutions in Memory

• In general:

36

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀1 through 𝑀W

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟,𝑟E𝑐5
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟,𝑟I𝑐5
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟,𝑟J𝑐5
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟,𝑟X𝑐5
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟,𝑟5𝑐5

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

37

3. Select a good order for solving subproblems

• In general:

38

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀1 through 𝑀W

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟,𝑟E𝑐5
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟,𝑟I𝑐5
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟,𝑟J𝑐5
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟,𝑟X𝑐5
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟,𝑟5𝑐5

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

3. Select a good order for solving subproblems

39

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
𝑗 =

= 𝑖
0

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

40

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

𝐵𝑒𝑠𝑡 1,2 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 2 + 𝑟,𝑟E𝑐E

0 15750

0

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖

41

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

𝐵𝑒𝑠𝑡 2,3 = min 𝐵𝑒𝑠𝑡 2,2 + 𝐵𝑒𝑠𝑡 3, 3 + 𝑟E𝑟I𝑐I

0 15750

0 2625

0

0

0

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖

42

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

𝑗 =
= 𝑖

43

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6
𝐵𝑒𝑠𝑡 1,3 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 3 + 𝑟,𝑟E𝑐I

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 3 + 𝑟,𝑟I𝑐I

𝑟,𝑟E𝑐I = 30 ⋅ 35 ⋅ 5 = 5250
𝑟,𝑟I𝑐I = 30 ⋅ 15 ⋅ 5 = 2250

0

0

2625

15750

3. Select a good order for solving subproblems

7875

𝑗 =
= 𝑖

44

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖

Matrix Chaining

45

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟,𝑟E𝑐]
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟,𝑟I𝑐]
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟,𝑟J𝑐]
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟,𝑟X𝑐]
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟,𝑟]𝑐]

15125

𝑗 =
= 𝑖

Run Time

1. Initialize 𝐵𝑒𝑠𝑡[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right,

fill in each cell using:
1. 𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. 𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

46

Θ(𝑛E) cells in the Array

Θ(𝑛) options for each cell

Θ(𝑛I) overall run time

Each “call” to Best() is a
O(1) memory lookup

Backtrack to find the best order

4747

“remember” which choice of 𝑘 was the minimum at each cell

0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟,𝑟E𝑐]
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟,𝑟I𝑐]
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟,𝑟J𝑐]
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟,𝑟X𝑐]
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟,𝑟]𝑐]

15125

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
31

5

𝑗 =
= 𝑖

Matrix Chaining

48

30

35

×𝑀, 35

15

×𝑀E
15

5

×𝑀I 5

10

×
𝑀J

10

20

×
𝑀X 20

25

𝑀]

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
WY,

/Z1
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟1𝑟/\,𝑐W

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟,𝑟E𝑐]
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟,𝑟I𝑐]
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟,𝑟J𝑐]
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟,𝑟X𝑐]
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟,𝑟]𝑐]

15125

𝑗 =
= 𝑖

31

5

Storing and Recovering Optimal Solution

• Maintain table Choice[i,j] in addition to Best table
– Choice[i,j] = k means the best “split” was right after Mk

– Work backwards from value for whole problem, Choice[1,n]
– Note: Choice[i,i+1] = i because there are just 2 matrices

• From our example:
– Choice[1,6] = 3. So [M1 M2 M3] [M4 M5 M6]
– We then need Choice[1,3] = 1. So [(M1) (M2 M3)]
– Also need Choice[4,6] = 5. So [(M4 M5) M6]
– Overall: [(M1) (M2 M3)] [(M4 M5) M6]

49

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

50

In Season 9 Episode 7 “The Slicer” of the hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated

argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
51https://www.youtube.com/watch?v=pSB3HdmLcY4

https://www.youtube.com/watch?v=pSB3HdmLcY4

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

53

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

54

