

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix?

(don't overthink this)

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- *m* multiplications and additions per element
- $n \cdot p$ elements to compute
- Total cost: $m \cdot n \cdot p$

Homeworks

- HW4 due 11pm Thursday, February 27, 2020
 - Divide and Conquer and Sorting
 - Written (use LaTeX!)
 - Submit BOTH a pdf and a zip file (2 separate attachments)
- Midterm: March 4
- Regrade Office Hours
 - Fridays 2:30pm-3:30pm (Rice 210)

- Wednesday, March 4 in class
 - SDAC: Please schedule with SDAC for Wednesday
 - Mostly in-class with a (required) take-home portion
- Practice Midterm available on Collab Friday
- Review Session
 - Details by email soon

Today's Keywords

- Dynamic Programming
- Log Cutting
- Matrix Chaining

CLRS Readings

- Chapter 15
 - Section 15.1, Log/Rod cutting, optimal substructure property
 - Note: r_i in book is called Cut() or C[] in our slides. We use their example.
 - Section 15.3, More on elements of DP, including optimal substructure property
 - Section 15.2, matrix-chain multiplication
 - Section 15.4, longest common subsequence (later example)

Log Cutting

Given a log of length nA list (of length n) of prices P(P[i]) is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_1, ..., \ell_k$ such that: $\sum \ell_i = n$ to maximize $\sum P[\ell_i]$ Brute Force: $O(2^n)$

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the most profitable cut first

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the "most bang for your buck"
 - (best price / length ratio)

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ Cut(0) + P[n] $Cut(n-\ell_k)$ ℓ_k best way to cut a log of length $n - \ell_k$ Last Cut

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Solve Smallest subproblem first

Cut(0)=0

Solve Smallest subproblem first

Cut(1) = Cut(0) + P[1]

Solve Smallest subproblem first

$$Cut(2) = \max - \begin{bmatrix} Cut(1) + P[1] \\ Cut(0) + P[2] \end{bmatrix}$$

Solve Smallest subproblem first

Log Cutting Pseudocode

```
Initialize Memory C
Cut(n):
     C[0] = 0
     for i=1 to n: // log size
           best = 0
          for j = 1 to i: // last cut
                best = max(best, C[i-j] + P[j])
          C[i] = best
     return C[n]
                                       Run Time: O(n^2)
```

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

```
Initialize Memory C, Choices
Cut(n):
      C[0] = 0
      for i=1 to n:
            best = 0
            for j = 1 to i:
                   if best < C[i-j] + P[j]:
                         best = C[i-j] + P[j]
                         Choices[i]=j Gives the size
                                          of the last cut
            C[i] = best
      return C[n]
```

Reconstruct the Cuts

• Backtrack through the choices

Example to demo Choices[] only. Profit of 20 is not optimal!

Backtracking Pseudocode

- i = n while i > 0:
 - print Choices[i]
 - i = i Choices[i]

Our Example: Getting Optimal Solution

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	30
Choice[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
 - Best score is 13
 - Cut at Choice[n]=2, then cut at Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
 - Best score is 18
 - Cut at 1, then cut at 6

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Matrix Chaining

• Given a sequence of Matrices $(M_1, ..., M_n)$, what is the most efficient way to multiply them?

Order Matters!

 $c_1 = r_2$ $c_2 = r_3$

• $(M_1 \times M_2) \times M_3$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations = 252 $7 \cdot 10 \cdot 20 + 7 \cdot 20 \cdot 6$

Order Matters!

 $c_1 = r_2$
 $c_2 = r_3$

Order Matters!

$$c_1 = r_2$$
$$c_2 = r_3$$

- $(M_1 \times M_2) \times M_3$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations - $(10 \cdot 7 \cdot 20) + 20 \cdot 7 \cdot 8 = 2520$
- $M_1 \times (M_2 \times M_3)$ - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations - 10 \cdot 7 \cdot 8 + (20 \cdot 10 \cdot 8) = 2160

 $M_1 = 7 \times 10$ $M_2 = 10 \times 20$ $M_3 = 20 \times 8$ $c_1 = 10$ $c_2 = 20$ $c_3 = 8$ $r_1 = 7$ $r_2 = 10$ $r_3 = 20$

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Best(1, n) = cheapest way to multiply together M₁ through M_n

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$ $Best(1,4) = \min - \begin{bmatrix} Best(2,4) + r_1r_2c_4 \\ Best(1,2) + Best(3,4) + r_1r_3c_4 \\ Best(1,3) + r_1r_4c_4 \end{bmatrix}$

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0 $Best(2,n) + r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min - Best(1,4) + Best(5,n) + r_1r_5c_n$ $Best(1, n - 1) + r_1 r_n c_n$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n-1) + r_1 r_n c_n$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_i $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n - 1) + r_1 r_n c_n$

42

43

Matrix Chaining

Run Time

- 1. Initialize Best[i, i] to be all 0s $\Theta(n^2)$ cells in the Array
- 2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

1.
$$Best[i,i] = 0$$

2. $Best[i,j] = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j))$

Each "call" to Best() is a O(1) memory lookup

$\Theta(n^3)$ overall run time

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
 - Choice[i,j] = k means the best "split" was right after M_k
 - Work backwards from value for whole problem, Choice[1,n]
 - Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
 - Choice[1,6] = 3. So [M₁ M₂ M₃] [M₄ M₅ M₆]
 - We then need Choice[1,3] = 1. So $[(M_1) (M_2 M_3)]$
 - Also need Choice[4,6] = 5. So [(M₄ M₅) M₆]
 - Overall: $[(M_1) (M_2 M_3)] [(M_4 M_5) M_6]$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Movie Time!

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?

• Method for image resizing that doesn't scale/crop the image

Seam Carving

• Method for image resizing that doesn't scale/crop the image

