imel

ne hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated
argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
https://www.youtube.com/watch?v=pSB3HdmLcY4 !

https://www.youtube.com/watch?v=pSB3HdmLcY4

 Wednesday, March 4 in class
— SDAC: Please schedule with SDAC for Wednesday

— Mostly in-class with a (required) take-home portion
* Practice Midterm and Solutions on Collab
* Review Session on Panopto

Today's Keywords

* Dynamic Programming
* Longest Common Subsequence
* Seam Carving

CLRS Readings

 Chapter 15
— Section 15.1, Log/Rod cutting, optimal substructure property

* Note: r,in book is called Cut() or C[] in our slides. We use their example.

— Section 15.3, More on elements of DP, including optimal substructure
property

— Section 15.2, matrix-chain multiplication

— Section 15.4, longest common subsequence (later example)

Log Cutting

Given a log of length n
A list (of length n) of prices P (P|i] is the price of a cut of size i)
Find the best way to cut the log

Price: 1 5 8 9 1110|1717 | 20| 24| 30

Length: 1 2 3 4 5 6 7 8 9 10

Select a list of lengths 4, ..., € such that:
2.t =n
to maximize), P[?;] Brute Force: O(2")

1. ldentify Recursive Structure

Pli] = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

 Cut(n — 1) + P[1]
Cut(n) = max — Cut(n—2)+ P[Z]

\.C.’.ut(O) + P[n]

Cut(n — €y)

Remember the choice made

Initialize Memory C, Choices
Cut(n):
C[0] =0
fori=1ton:
best=0
forj=1toi:
if best < Cli-j] + P[j]:
best = C[i-]] + P[j]
Choices[i]zﬂ Gives the size
C[i] = best of the last cut
return C[n] :

Backtracking Pseudocode

l=n

while i > 0:
print Choices|i]
i =i — Choices]i]

Matrix Chaining

* Given a sequence of Matrices (M4, ..., M,;), what is the most
efficient way to multiply them?

10

Order Matters!

+ (M x M) < Mg

—uses (¢q - 11 * ¢) + ¢, - 1y - c3 Operations

11

Order Matters!

« M, x(Mg*x M9
—usescy - Iy - C3 + (Cy * 15 * €3) Operations

12

2. Save subsolutions in Memory

* |[n general:

Best(i,j) = cheapest

way to multiply together M; through M;

Jj—1
Best(i,j) = I%lilfl(BQSt(i, k) + Best(k +1,j) + Ti”'"k+1cj)

Best(i,i) =0

—

Save to M[n]

Best(1,n) = min —

Read from M[n]
if present

Best(2,n) + ryrycy

Best(1,2) + Best(3,n) + ryrscy
Best(1,3) + Best(4,n) + ryr.cy
Best(1,4) + Best(5,n) + ryrscp,

Best(1,n — 1) + rir,cq

—

13

3. Select a good order for solving Subprob\ems

3..@ E..
><35><15><5 M,

Best(i,j) = m1n(Best(l k) + Best(k + 1,j) + rlrk+1c])
j=1 2 3 4 5 6 \

Best(i,i) =0

To find Best(i, j): Need all preceding
terms of row i and column j

Conclusion: solve in order of diagonal

Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
if mem|[problem] not blank:
return mem|[problem]
if baseCase(problem):
solution = solve(problem)
mem|[problem] = solution
return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem|[problem] = solution
return solution

15

Seam Carving

* Method for image resizing that doesn’t scale/crop the image

16

[ale

>
T
>,
=
3
D
)

* Method for image resizing that doesn’t scale/crop the image

Carved

Scaled

17

[ale

Cropp

2
Q
X
o
(-
@)
Y
O
O
=
(qV)
n
QD
>
@)
=
Q
o
®

Scaling

i)
Q
X
Q.
Y
@
HS
(b
Q.
o
)
W
wm
Q
>
O
&
Q
'
°

Seam Carving

* Removes “least energy seam” of pixels

e http://rsizr.com/

Carved

=N

http://rsizr.com/

Energy of Pixels

Define the “interestingness” or energy of a pixel

* e(p) = energy of pixel p
 Many choices

— Ex: change of gradient (how much the color of this pixel differs from
its neighbors)

* Euclidian distance from it’s direct neighbors
* Gradient of some number of surrounding pixels
 Difference in intensity (but not color)

— Particular choice doesn’t matter, we use it as a “black box”

21

Seams

Seam: path of pixels from the top to the bottom of the image

* One pixel per row .
* Direct neighbors: vertically or horizontally

Energy of Seam: Sum of the energies of each pixel

e Yir;e(p;) - the sum of each pixel on the seam (one per row)

22

ne

Seattle Skyli

xample

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* |dea:
1. Identify the recursive structure of the problem
 What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

24

[dentity Recursive Structure

Let S(i,j) = least energy seam from the bottom of the image up
to pixel p; ;

25

~INAing the Least Energy Seam

Want the least energy seam going from bottom to top, so find and delete:
m
min(S(n, k))

’— Pn k

26

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1,) for all ¥)

pn,k

Known
through—
n—1

27

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

Pn.k

. .
S(n-llk)

28

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

S(n—1,k—1) + e(Pny)

S(n—1,k)+e(Pnk)
S(h=1k+1)+e(Pni)

S(n, k) = min—
Pn .k

. .
S(n-llk)

29

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

30

Computing S(n, k)

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

S(n—1,k—1) + e(Pny)

S(n—1,k)+e(Pnk)
S(h=1k+1)+e(Pni)

Store in memory! \

Read from memory!

S(n, k) = min—
Pn .k

. .
S(n-llk)

31

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

32

Seam Carving Solution

Start from bottom of image (row 1), solve up to top

Initialize S(1, k) = e(py k) for each pixel in row 1

Energy of the seam

HEEEEEEBEEEEEEEEEN rtaledtothe
- |

Y energy of that pixel

m

33

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize S(1, k) = e(py k) for each pixel py i

/S(n —1,k—1)+e(pni)
Fori > 2 find S(i, k) = min — S(n—1,k) + e(Pn)

Sn—1,k+1)+e(®Pnk)

Energy of the seam

HEEEEEEBEEEEEEEEEN rtaledtothe
- |

Y energy of that pixel

m

34

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize S(1, k) = e(py k) for each pixel py i
Sm—1,k—1) +e(Pnk)

Fori > 2find S(i,k) = min — ¢ — 1 k) + e(p 1)

Sn—1,k+1)+e(®nk)

Pick smallest from top row, backtrack, removing those pixels

Energy of the seam

HEEEEEEBEEEEEEEEEN rtaledtothe
- |

Y energy of that pixel

m 35

n—<

Run Time"

Start from bottom of image (row 1), solve up to top

Initialize S(1, k) = e(py) for each pixel p O(m)
Smn—1,k—1) +e(pir)
Fori > 2 find S(i, k) = min — S(h—1,k) + e(pip) O(n-m)

S(Tl — 1,k ~+ 1) + e(pl-,k)

Pick smallest from top row, backtrack, removing those pixels O(n +m)

AN

Energy of the seam

HEEEEEEBEEEEEEEEEN rtaledtothe
- |

Y energy of that pixel

m 36

Repeated seam Removal

Only need to update pixels dependent on the removed seam
2n pixels change O(2n) time to update pixels

O(n + m) time to find min+backtrack

37

Longest Common subseguence

Given two sequences X and Y,
find the length of their longest
common subsequence

Example:

X = ATCTGAT
Y = TGCATA
LCS = TCTA

Brute force: Compare every

subsequence of X with Y
Q2™

38

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* |dea:
1. Identify the recursive structure of the problem
 What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

39

1. ldentify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y
Find LCS(1,)):

| _ X = ATCTGCG
Case 1: X[i] = Y[j] Y = TEZ‘ATM’@
LCS(i,j)) =LCS(i—1,j—1)+1

Case 2: X|i] + Y[j]

X = AI_CIGCG@ X = ATCTGCGT
Y = TGCATAT Y = TGCATAC
LCS(i,j) = LCS(i,j — 1) LCS(i,j) = LCS(i —1,j)
0 ifi=0o0rj=0
LCS(i,j) = LCS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise .

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

41

1. ldentify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y
Find LCS(1,)):

Case 1: X[i] = Y[/] X = ATCTGCGT

Y = TGCATAT
LCS(i,j) = LCS(Gi—1,j — 1) + 1
Case 2: X|i] + Y[j]

X = ATCTGCGA X = ATCTGCGT
Y = TGCATAT Y = TGCATAC
LCS@i,) = LCS(i,j — 1) LCS@i,) = LCS(i — 1,)
’O Read from M[i,j] ifi =0 Ol"j =0
.. if
LC-S'}‘(L]) =< LCS(i—1,] — 1)% i if X[i] = Y[/]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise .

Save to M[i,j]

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

43

3. Solve In a Good Order

0 ifi=0o0rj=0
LCS(i,j)) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise
X = A T C T G A T
> 0 1 2 3 4 5 6 7
S ol o 0 0 0 0 0 0 0
T 1| O
G 2| o
C 3| o
A 4| o
T 5| o]
A 6| o0

Tofillincell (i,j)weneedcells (i —1,j —1),(i—1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference) =

3. Solve In a Good Order

0 ifi=0o0rj=0
LCS(i,j) = Lcs(i—1,j— 1)+ 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T G A T

+ 0 1 2 3 4 5 6 7

S o o 0 0 0 0 0 0 0
T 1| 0
G 2| o0
C 3| o
A 4| o
T 5| 0
A 6| o0

Tofillincell (i,j)weneedcells (i —1,j —1),(i—1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference) 45

3. Solve In a Good Order

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

B |lR|lm|lolo|lo|lOo|
NN R R|Rr|R,|lo[DMS
NIN|IN|IN|R[R[o|WO
Blw|lw|N|N|R|O|lax
Bl |lw NNl

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

W W ININ[FR|FR|O
W W INININ|IP-R|O

s B N R o B

Tofillincell (i,j)weneedcells (i —1,j —1),(i—1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference) 46

Run Time"

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X =
A
A

B |lR|lm|lolo|lo|lOo|
NN R R|Rr|R,|lo[DMS
NIN|IN|IN|R[R[o|WO
Blw|lw|N|N|R|O|lax
Bl |lw NNl

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

> N x> O 9 S
WIW|IN|N|F|[F|lO
WIW|N|N|N|(R|O

Run Time: O(n - m) (for |X| =n, |Y| = m)

47

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j)) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T G Al |T

= 0 1 2 3) 5 6 7
A ol o 0 0 0| O 0 0 0
T|1] o 0 1 1 P 1 1 1 1
Gl2| o 0 1 1 1 A 2 2 2

c 3| o 0 1 2 2 2 | 2 2

Al a4l o 1 1 2 2 2 K 3 W 3

T 5| o 1 2 2 3 3 3 | a4

A 6| o 1 2 2 3 3 a |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 4

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j) = Lcs(i—1,j— 1)+ 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise
X = A T C T G Al LT
ro 0 1 2 3 4 5 6 7
A ol o 0w O 0 0 0 0 0
T 1] o 0 |a1l 1 1 1 1 1
G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 \ 2 € 2€1T 2 | 2 2
Al 4] o0 1 1 2 2 2 < 3 W 3
T| 5] o 1 2 2 3 3 3 | a4
A 6| o 1 2 2 3 3 4 |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 9

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j) = Lcs(i—1,j— 1)+ 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T ¢ la| T

= 0 1 2 3 7} 5 6 7
T oo o 0 O 0 0 0 0 0
T|1] o 0 |a1l 1 1 1 1 1

G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 | "A2 2 2 2 2

A 4| o 1 1 | 2 2 2 3 3

T 5| o 1 2 2 3 3 3 4
Ale| o 1 2 2 3 3 4 €— 4

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent o0

el
(e | 7"/5\ %
lon | fe”
%] T % lt’? = |
nl .
— \
\
4 \
m
L —

lojflq A~ ij\

52

l"av‘ — 0O
0,2 = 1
04,2 >4

53

S\,.gaf (O\

VL
Swiy W)

Swop(2)

kg;np ;)

s

9‘"“'? (6

55

