

Time!
In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the
 ocean. How did George make this discovery?

Midterm

- Wednesday, March 4 in class
- SDAC: Please schedule with SDAC for Wednesday
- Mostly in-class with a (required) take-home portion
- Practice Midterm and Solutions on Collab
- Review Session on Panopto

Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Seam Carving
- Chapter 15
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
- Section 15.2, matrix-chain multiplication
- Section 15.4, longest common subsequence (later example)

Log Cutting

Given a log of length n
A list (of length n) of prices P ($P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that: $\sum \ell_{i}=n$
to maximize $\sum P\left[\ell_{i}\right]$

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\operatorname{Cut}(n)=\max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\cdots \\
\operatorname{Cut}(0)+P[n]
\end{array}\right] \quad \operatorname{Cut}\left(n-\ell_{k}\right) \quad .
$$

Remember the choice made

Initialize Memory C, Choices
Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n :

$$
\text { best }=0
$$

$$
\text { for } j=1 \text { to } i \text { : }
$$

if best < C[i-j] + P[j]:

$$
\text { best }=C[i-j]+P[j]
$$

Choices[i]=j Gives the size
$\mathrm{C}[\mathrm{i}]=$ best
return $\mathrm{C}[\mathrm{n}]$

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}-$ Choices $[\mathrm{i}]$

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
- uses $\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+\mathrm{c}_{2} \cdot r_{1} \cdot c_{3}$ operations

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

2. Save Subsolutions in Memory

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } \mathrm{M}[\mathrm{n}]} \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\text { Rean } \\
\text { if present }
\end{array}\right. \\
& \operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
& \operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
& \operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
& \operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
& \ldots \\
& \operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{aligned}
$$

3. Select a good order for solving subproblems

Generic Top-Down Dynamic Programming Soln

```
mem = {}
def myDPalgo(problem):
    if mem[problem] not blank:
        return mem[problem]
    if baseCase(problem):
        solution = solve(problem)
        mem[problem] = solution
        return solution
    for subproblem of problem:
    subsolutions.append(myDPalgo(subproblem))
    solution = OptimalSubstructure(subsolutions)
    mem[problem] = solution
    return solution
```


Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Cropping

- Removes a "block" of pixels

Scaling

- Removes "stripes" of pixels

Seam Carving

- Removes "least energy seam" of pixels

- http://rsizr.com/

Carved

Energy of Pixels

Define the "interestingness" or energy of a pixel

- $e(p)=$ energy of pixel p
- Many choices
- Ex: change of gradient (how much the color of this pixel differs from its neighbors)
- Euclidian distance from it's direct neighbors
- Gradient of some number of surrounding pixels
- Difference in intensity (but not color)
- Particular choice doesn't matter, we use it as a "black box"

Seams

Seam: path of pixels from the top to the bottom of the image

- One pixel per row
- Direct neighbors: vertically or horizontally

Energy of Seam: Sum of the energies of each pixel

- $\sum_{i=1}^{n} e\left(p_{i}\right)$ - the sum of each pixel on the seam (one per row)

Example: Seattle Skyline

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so find and delete:

$$
\min _{k=1}(S(n, k))
$$

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Seam Carving Solution

Start from bottom of image (row 1), solve up to top Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel in row 1

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$
For $i>2$ find $S(i, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ S(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$

Energy of the seam
initialized to the
energy of that pixel

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$
For $i>2$ find $S(i, k)=\min \left\{\begin{array}{l}S(n-1, k-1)+e\left(p_{n, k}\right) \\ S(n-1, k)+e\left(p_{n, k}\right) \\ S(n-1, k+1)+e\left(p_{n, k}\right)\end{array}\right.$
Pick smallest from top row, backtrack, removing those pixels

Run Time?

Start from bottom of image (row 1), solve up to top
Initialize $S(1, k)=e\left(p_{1, k}\right)$ for each pixel $p_{1, k}$

$$
\Theta(m)
$$

$S(n-1, k-1)+e\left(p_{i, k}\right)$
For $i \geq 2$ find $S(i, k)=\min \left\{S(n-1, k)+e\left(p_{i, k}\right)\right.$
$S(n-1, k+1)+e\left(p_{i, k}\right)$
Pick smallest from top row, backtrack, removing those pixels

$$
\Theta(n+m)
$$

Repeated Seam Removal

Only need to update pixels dependent on the removed seam $2 n$ pixels change $\quad \Theta(2 n)$ time to update pixels
$\Theta(n+m)$ time to find min+backtrack

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:

$X=$ ATCTGAT
$Y=$ TGCATA
LCS = TCTA
Brute force: Compare every subsequence of X with Y
$\Omega\left(2^{n}\right)$

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\begin{array}{cr}
X & =A \underline{T C T G C G T} \\
\text { Case 1: } X[i]=Y[j] & Y \\
& =T G C A T A T
\end{array}
$$

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\operatorname{ATCTGCGT} \\
Y & =\operatorname{TGCATAT} \\
& \operatorname{LCS}(i, j)=\operatorname{LCS}(i-1, j-1)+1
\end{aligned}
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{rrr}
X=\operatorname{ATCTGCGA} & X & =\operatorname{ATCTGCGT} \\
Y=\operatorname{TGCATAT} & Y & =\operatorname{TGCATAC} \\
\operatorname{LCS}(i, j)=\operatorname{LCS}(i, j-1) & \operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\underset{\quad}{\operatorname{LCS}(i, j)} \begin{aligned}
& \quad \text { Read from M }[i, j] \\
& \text { Save to } \mathrm{M}[i, j]
\end{aligned}=\left\{\begin{array}{lc}
0 & \text { if } i=0 \text { or } j=0 \\
\operatorname{LCS}(i-1, j-1)+1 & \text { if present } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }
\end{array}\right.
$$

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

3. Solve in a Good Order

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

\& $X=$	0	A 1	T 2	C 3	T 4	G 5	A 6	T 7
0	0	0	0	0	0	0	0	0
T 1	0							
G 2	0							
C 3	0							
A 4	0							
T 5	0							
	0							

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

3. Solve in a Good Order

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

\& $X=$		0	A 1	$\begin{aligned} & T \\ & 2 \end{aligned}$	C 3	$\begin{aligned} & T \\ & 4 \end{aligned}$	$\begin{aligned} & G \\ & 5 \end{aligned}$	$\begin{aligned} & A \\ & 6 \end{aligned}$	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

」 $X=$		0	A 1	T 2	C 3	T 4	G 5	A 6	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

Run Time: $\Theta(n \cdot m)$ (for $|X|=n,|Y|=m)$

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

」 $X=$		0	A1	T2	C3	T4	G5	$\frac{A}{6}$	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1		2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Midterm Review

$$
T(n)=\log ^{T\left(\frac{n}{5}\right)+T^{\left(\frac{4 n}{5}\right)}+\frac{\partial(n)}{}}
$$

$$
\begin{aligned}
& \log _{2} 4=2 \\
& \log _{1} 2=2 \\
& \log _{2} 1=0 \\
& \log _{2} 2=1 \\
& \log _{4} 2=\frac{1}{2}
\end{aligned}
$$

