



In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?







- Wednesday, March 4 in class
  - SDAC: Please schedule with SDAC for Wednesday
  - Mostly in-class with a (required) take-home portion
- Practice Midterm and Solutions on Collab
- Review Session on Panopto

## Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Seam Carving

# CLRS Readings

- Chapter 15
  - Section 15.1, Log/Rod cutting, optimal substructure property
    - Note: r<sub>i</sub> in book is called Cut() or C[] in our slides. We use their example.
  - Section 15.3, More on elements of DP, including optimal substructure property
  - Section 15.2, matrix-chain multiplication
  - Section 15.4, longest common subsequence (later example)

# Log Cutting

Given a log of length nA list (of length n) of prices P(P[i]) is the price of a cut of size i) Find the best way to cut the log



Select a list of lengths  $\ell_1, ..., \ell_k$  such that:  $\sum \ell_i = n$ to maximize  $\sum P[\ell_i]$  Brute Force:  $O(2^n)$ 

### 1. Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n  $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ Cut(0) + P[n] $Cut(n-\ell_k)$  $\ell_k$ best way to cut a log of length  $n - \ell_k$ Last Cut

```
Initialize Memory C, Choices
Cut(n):
      C[0] = 0
      for i=1 to n:
            best = 0
            for j = 1 to i:
                   if best < C[i-j] + P[j]:
                         best = C[i-j] + P[j]
                         Choices[i]=j Gives the size
                                          of the last cut
            C[i] = best
      return C[n]
```

### Backtracking Pseudocode

- i = n while i > 0:
  - print Choices[i]
  - i = i Choices[i]

### Matrix Chaining

• Given a sequence of Matrices  $(M_1, ..., M_n)$ , what is the most efficient way to multiply them?



#### Order Matters!

 $c_1 = r_2$  $c_2 = r_3$ 



•  $(M_1 \times M_2) \times M_3$ - uses  $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$  operations

#### Order Matters!

 $c_1 = r_2$ <br/> $c_2 = r_3$ 



### 2. Save Subsolutions in Memory

• In general:

Best(i, j) = cheapest way to multiply together M<sub>i</sub> through M<sub>j</sub> $Best(i,j) = \min_{k=i}^{j-1} \left( Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$  Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) +  $r_1r_2c_n$  $Best(1,2) + Best(3,n) + r_1r_3c_n$  $Best(1,3) + Best(4,n) + r_1r_4c_n$  $Best(1,n) = \min$  $Best(1,4) + Best(5,n) + r_1r_5c_n$ . . .  $Best(1, n-1) + r_1 r_n c_n$ 

### 3. Select a good order for solving subproblems



#### Generic Top-Down Dynamic Programming Soln

 $mem = \{\}$ def **myDPalgo**(problem): if mem[problem] not blank: return mem[problem] if baseCase(problem): solution = solve(problem) mem[problem] = solution return solution for subproblem of problem: subsolutions.append(myDPalgo(subproblem)) solution = OptimalSubstructure(subsolutions) mem[problem] = solution return solution

### Seam Carving

• Method for image resizing that doesn't scale/crop the image



### Seam Carving

• Method for image resizing that doesn't scale/crop the image

Cropped



Scaled



Carved



# Cropping

• Removes a "block" of pixels



Cropped



## Scaling

• Removes "stripes" of pixels







## Seam Carving

- Removes "least energy seam" of pixels
- http://rsizr.com/



Carved



# Energy of Pixels

Define the "interestingness" or energy of a pixel

- e(p) = energy of pixel p
- Many choices
  - Ex: change of gradient (how much the color of this pixel differs from its neighbors)
    - Euclidian distance from it's direct neighbors
    - Gradient of some number of surrounding pixels
    - Difference in intensity (but not color)
  - Particular choice doesn't matter, we use it as a "black box"

#### Seams

Seam: path of pixels from the top to the bottom of the image

- One pixel per row
- Direct neighbors: vertically or horizontally



Energy of Seam: Sum of the energies of each pixel

•  $\sum_{i=1}^{n} e(p_i)$  - the sum of each pixel on the seam (one per row)

### Example: Seattle Skyline



# Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
  - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
  - "Top Down": Solve each recursively
  - "Bottom Up": Iteratively solve smallest to largest

#### Identify Recursive Structure

Let S(i, j) = least energy seam from the bottom of the image up to pixel  $p_{i,j}$ 

![](_page_24_Picture_2.jpeg)

### Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so find and delete:  $\min_{k=1}^{m} (S(n,k))$ 

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_2.jpeg)

# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify the recursive structure of the problem
    - What is the "last thing" done?
  - 2. Save the solution to each subproblem in memory
  - 3. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest

![](_page_30_Figure_2.jpeg)

# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify the recursive structure of the problem
    - What is the "last thing" done?
  - 2. Save the solution to each subproblem in memory
  - 3. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest

### Seam Carving Solution

Start from bottom of image (row 1), solve up to top Initialize  $S(1, k) = e(p_{1,k})$  for each pixel in row 1

![](_page_32_Figure_2.jpeg)

### Seam Carving Solution

Start from bottom of image (row 1), solve up to top

Initialize  $S(1, k) = e(p_{1,k})$  for each pixel  $p_{1,k}$ For i > 2 find  $S(i, k) = \min -\begin{cases} S(n - 1, k - 1) + e(p_{n,k}) \\ S(n - 1, k) + e(p_{n,k}) \\ S(n - 1, k + 1) + e(p_{n,k}) \end{cases}$ 

![](_page_33_Figure_3.jpeg)

### Seam Carving Solution

Start from bottom of image (row 1), solve up to top

Initialize  $S(1, k) = e(p_{1,k})$  for each pixel  $p_{1,k}$ For i > 2 find  $S(i, k) = \min - \begin{cases} S(n - 1, k - 1) + e(p_{n,k}) \\ S(n - 1, k) + e(p_{n,k}) \\ S(n - 1, k + 1) + e(p_{n,k}) \end{cases}$ 

Pick smallest from top row, backtrack, removing those pixels

![](_page_34_Figure_4.jpeg)

### Run Time?

Start from bottom of image (row 1), solve up to top

Initialize  $S(1, k) = e(p_{1,k})$  for each pixel  $p_{1,k}$ For  $i \ge 2$  find  $S(i, k) = \min - \begin{cases} S(n-1, k-1) + e(p_{i,k}) \\ S(n-1, k) + e(p_{i,k}) \\ S(n-1, k+1) + e(p_{i,k}) \end{cases}$  $\Theta(n \cdot m)$ 

### Repeated Seam Removal

Only need to update pixels dependent on the removed seam 2n pixels change  $\Theta(2n)$  time to update pixels  $\Theta(n+m)$  time to find min+backtrack n

37

### Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example: X = ATCTGAT Y = TGCATALCS = TCTA

Brute force: Compare every subsequence of X with Y  $\Omega(2^n)$ 

![](_page_37_Picture_4.jpeg)

# Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
  - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
  - "Top Down": Solve each recursively
  - "Bottom Up": Iteratively solve smallest to largest

### 1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

 $X = A\underline{T}\underline{C}\underline{T}GCG\underline{T}$  $Y = \underline{T}G\underline{C}A\underline{T}A\underline{T}$ Case 1: X[i] = Y[j]LCS(i, j) = LCS(i - 1, j - 1) + 1Case 2:  $X[i] \neq Y[j]$ X = ATCTGCGAX = ATCTGCGTY = TGCATATY = TGCATACLCS(i, j) = LCS(i, j - 1)LCS(i, j) = LCS(i - 1, j) $LCS(i,j) = \begin{cases} 0 & \text{if } X[i] = Y[j] \\ Max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$ if i = 0 or j = 0

40

# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify the recursive structure of the problem
    - What is the "last thing" done?
  - 2. Save the solution to each subproblem in memory
  - 3. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest

### 1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> X = ATCTGCGTCase 1: X[i] = Y[j]Y = TGCATATLCS(i, j) = LCS(i - 1, j - 1) + 1Case 2:  $X[i] \neq Y[j]$ X = ATCTGCGAX = ATCTGCGTY = TGCATATY = TGCATACLCS(i,j) = LCS(i,j-1)LCS(i, j) = LCS(i - 1, j) $LCS(i,j) = - \begin{bmatrix} 0 & \text{Read from M[i,j]} & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if present} & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{bmatrix}$ Save to M[i,j]

# Dynamic Programming

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify the recursive structure of the problem
    - What is the "last thing" done?
  - 2. Save the solution to each subproblem in memory
  - 3. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest

#### 3. Solve in a Good Order

![](_page_43_Figure_1.jpeg)

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

#### 3. Solve in a Good Order

![](_page_44_Figure_1.jpeg)

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

#### 3. Solve in a Good Order

$$LCS(i,j) = \begin{pmatrix} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{pmatrix}$$

$$X = \begin{pmatrix} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \\ \end{pmatrix}$$

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

### Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

![](_page_46_Figure_2.jpeg)

Run Time:  $\Theta(n \cdot m)$  (for |X| = n, |Y| = m)

0

### Reconstructing the LCS

![](_page_47_Figure_1.jpeg)

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

### Reconstructing the LCS

![](_page_48_Figure_1.jpeg)

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

### Reconstructing the LCS

![](_page_49_Figure_1.jpeg)

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

#### Midterm Review

 $T(n) = T(\frac{n}{s}) + T(\frac{4n}{s}) + O(n)$ n 415 4n/5 n/5 7/5 16n 85 Un ya Zr ya 16n 25 1/25 25 12 41/25 logn ~ logs n logs A ~ logs <u>\_</u> O(n logn) 52

10g24 = 2 log1 =0  $l_{0} 2 - 1$  $l_{0} 2 - 1$  $l_{0} 2 - 1$  $l_{2} 2$ 

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)