
In Season 9 Episode 7 “The Slicer” of the hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated

argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
1https://www.youtube.com/watch?v=pSB3HdmLcY4

Warm Up

https://www.youtube.com/watch?v=pSB3HdmLcY4

Midterm

• Wednesday, March 4 in class
– SDAC: Please schedule with SDAC for Wednesday
– Mostly in-class with a (required) take-home portion

• Practice Midterm and Solutions on Collab
• Review Session on Panopto

3

Today’s Keywords

• Dynamic Programming
• Longest Common Subsequence
• Seam Carving

4

CLRS Readings

• Chapter 15
– Section 15.1, Log/Rod cutting, optimal substructure property
• Note: ri in book is called Cut() or C[] in our slides. We use their example.

– Section 15.3, More on elements of DP, including optimal substructure
property

– Section 15.2, matrix-chain multiplication
– Section 15.4, longest common subsequence (later example)

5

Log Cutting

6

Given a log of length 𝑛
A list (of length 𝑛) of prices 𝑃 (𝑃[𝑖] is the price of a cut of size 𝑖)
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ', … , ℓ* such that:
∑ℓ, = 𝑛

to maximize ∑𝑃[ℓ,] Brute Force: 𝑂(21)

1. Identify Recursive Structure

7

𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ*
𝐶𝑢𝑡(𝑛 − ℓ*)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒌

𝑃 𝑖 = value of a cut of length 𝑖

Remember the choice made

8

Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size
of the last cut

Backtracking Pseudocode

i = n
while i > 0:

print Choices[i]
i = i – Choices[i]

9

Matrix Chaining

10

𝑀'𝑟'

𝑐'

𝑟B×

𝑐B

𝑀D𝑟D

𝑐D

× × 𝑟E

𝑐E

• Given a sequence of Matrices (𝑀', … ,𝑀1), what is the most
efficient way to multiply them?

𝑀B 𝑀E

Order Matters!

• 𝑀'×𝑀B ×𝑀D
– uses 𝑐' ⋅ 𝑟' ⋅ 𝑐B + cB ⋅ 𝑟' ⋅ 𝑐D operations

11

𝑀'𝑟'

𝑐'

𝑟B×

𝑐B

𝑀D
𝑟D

𝑐D

×𝑀B

𝑟'

𝑐B

𝑐' = 𝑟B
𝑐B = 𝑟D

Order Matters!

• 𝑀'×(𝑀B×𝑀D)
– uses c' ⋅ r' ⋅ 𝑐D + (cB ⋅ 𝑟B ⋅ 𝑐D) operations

12

𝑟B

𝑐D

𝑐' = 𝑟B
𝑐B = 𝑟D

𝑀'𝑟'

𝑐'

𝑟B×

𝑐B

𝑀D
𝑟D

𝑐D

×𝑀B

2. Save Subsolutions in Memory

• In general:

13

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀, through 𝑀M

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟'𝑟B𝑐1
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟'𝑟D𝑐1
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟'𝑟E𝑐1
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟'𝑟S𝑐1
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟'𝑟1𝑐1

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
MT'

*U,
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟,𝑟*W'𝑐M

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n]
if present

14

30

35

×𝑀' 35

15

×𝑀B
15

5

×𝑀D 5

10

×
𝑀E

10

20

×
𝑀S 20

25

𝑀X

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
MT'

*U,
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟,𝑟*W'𝑐M

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875

0 2625

0 750

0 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖

Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution

15

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

16

Seam Carving

• Method for image resizing that doesn’t scale/crop the image

17

Cropped Scaled Carved

Cropping

• Removes a “block” of pixels

18

Cropped

Scaling

• Removes “stripes” of pixels

19

Scaled

Seam Carving

• Removes “least energy seam” of pixels
• http://rsizr.com/

20

Carved

http://rsizr.com/

Energy of Pixels

Define the “interestingness” or energy of a pixel
• 𝑒 𝑝 = energy of pixel 𝑝
• Many choices
– Ex: change of gradient (how much the color of this pixel differs from

its neighbors)
• Euclidian distance from it’s direct neighbors
• Gradient of some number of surrounding pixels
• Difference in intensity (but not color)

– Particular choice doesn’t matter, we use it as a “black box”

21

Seams

Seam: path of pixels from the top to the bottom of the image
• One pixel per row
• Direct neighbors: vertically or horizontally

Energy of Seam: Sum of the energies of each pixel
• ∑,U'1 𝑒(𝑝,) - the sum of each pixel on the seam (one per row)

22

Example: Seattle Skyline

23

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

24

Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 = least energy seam from the bottom of the image up
to pixel 𝑝,,M

25

𝑝,,M

Finding the Least Energy Seam

26

𝑝1,*

Want the least energy seam going from bottom to top, so find and delete:

min
\

*U'
𝑆(𝑛, 𝑘)

𝑛

𝑚

Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

27

𝑝1,*

Known
through
𝑛 − 1

𝑚

Computing 𝑆(𝑛, 𝑘)

28

S(n-1,k-1)

𝑝1,*

S(n-1,k) S(n-1,k+1)

S(n,k)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Computing 𝑆(𝑛, 𝑘)

29

S(n-1,k-1)

𝑝1,*

S(n-1,k) S(n-1,k+1)

S(n,k)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,*)

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

30

Computing 𝑆(𝑛, 𝑘)

31

S(n-1,k-1)

𝑝1,*

S(n-1,k) S(n-1,k+1)

S(n,k)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,*)

Store in memory!

Read from memory!

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

32

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝',*) for each pixel in row 1

33

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝',*) for each pixel 𝑝',*

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

34

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,*)

Seam Carving Solution

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝',*) for each pixel 𝑝',*

For 𝑖 > 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels

35

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝1,*)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝1,*)

Run Time?

Start from bottom of image (row 1), solve up to top
Initialize 𝑆 1, 𝑘 = 𝑒(𝑝',*) for each pixel 𝑝',*

For 𝑖 ≥ 2 find 𝑆 𝑖, 𝑘 = min

Pick smallest from top row, backtrack, removing those pixels

36

𝑛

𝑚

Energy of the seam
initialized to the
energy of that pixel

𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝,,*)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝,,*)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝,,*)

Θ(𝑛 ⋅ 𝑚)

Θ(𝑚)

Θ(𝑛 +𝑚)

Repeated Seam Removal

37

𝑛

𝑚

Only need to update pixels dependent on the removed seam
2𝑛 pixels change Θ(2𝑛) time to update pixels

Θ(𝑛 +𝑚) time to find min+backtrack

Longest Common Subsequence

38

Given two sequences 𝑋 and 𝑌,
find the length of their longest
common subsequence

Brute force: Compare every
subsequence of 𝑋 with 𝑌
Ω(21)

Example:
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐴𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴
𝐿𝐶𝑆 = 𝑇𝐶𝑇𝐴

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

39

1. Identify Recursive Structure

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

40

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝐶

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝐴
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

41

1. Identify Recursive Structure

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

42

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝐶

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝐴
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

Save to M[i,j]

Read from M[i,j]
if present

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

43

3. Solve in a Good Order

44

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 3 3

0 1 2 2 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

3. Solve in a Good Order

45

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 3 3

0 1 2 2 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

3. Solve in a Good Order

46

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)

Run Time?

47

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)

Reconstructing the LCS

48

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

49

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

50

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Midterm Review

51

52

53

54

55

