
Warm up
Simplify:

1 + 𝑎 + 𝑎$ + 𝑎% + 𝑎& +⋯+ 𝑎(𝑎 − 1 = ?

1

𝑎 + 𝑎$ + 𝑎% + 𝑎& + 𝑎+ +⋯+ 𝑎(+ 𝑎(,- +
−𝑎 − 𝑎$ − 𝑎% − 𝑎& − 𝑎+ −⋯− 𝑎(− 1 =

𝑎(,- − 1

.
/01

(

𝑎/ =
𝑎(,- − 1
𝑎 − 1

Spring 2020

Finite Geometric Series

2

The series
multiplied by 𝑎 The series The first term

= −−

1+ 𝑎 + 𝑎$ + ⋯+ 𝑎(𝑎 1 + 𝑎 + 𝑎$ + ⋯+ 𝑎(1 𝑎(,- 1

𝑎 < 1

The next term
in the series

Finite Geometric Series

3

= −−

𝑎 > 1

The series
multiplied by 𝑎 The series The first term

1 + 𝑎 + 𝑎$ + ⋯+ 𝑎(𝑎 1 + 𝑎 + 𝑎$ + ⋯+ 𝑎(1 𝑎(,- 1

The next term
in the series

Today’s Keywords

• Divide and Conquer
• Recurrences
• Merge Sort
• Karatsuba
• Tree Method

4

CLRS Readings

• Chapter 4

5

Homeworks

• HW1 due Thursday, January 30 at 11pm
– Start early!
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Divide and Conquer

6

Homework Help Algorithm

• Algorithm: How to ask a question about homework (efficiently)
1. Check to see if your question is already on piazza
2. If it’s not on piazza, ask on piazza
3. Look for other questions you know the answer to, and provide

answers to any that you see
4. TA office hours
5. Instructor office hours
6. Email, set up a meeting

Office Hours

8

Divide and Conquer*

• Divide:
– Break the problem into multiple subproblems, each smaller instances of

the original
• Conquer:
– If the subproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

9
*CLRS Chapter 4

Analyzing Divide and Conquer
1. Break into smaller subproblems
– Define smaller subproblems, how to divide and combine their results

2. Use recurrence relation to express recursive running time
– Divide: 𝐷(𝑛) time,
– Conquer: recurse on small problems, size 𝑠
– Combine: C(𝑛) time
– Recurrence:

𝑇 𝑛 = 𝐷 𝑛 + ∑𝑇(𝑠) + 𝐶(𝑛)

3. Use asymptotic notation to simplify

10

Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
11

?
get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify

Merge Sort

• Divide:
– Break 𝑛-element list into two lists of ⁄> $ elements

• Conquer:
– If 𝑛 > 1:
• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

12

Merge
• Combine: Merge sorted sublists into one sorted list
• We have:
– 2 sorted lists (𝐿-, 𝐿$)
– 1 output list (𝐿@AB)

While (𝐿- and 𝐿$ not empty):
If 𝐿- 0 ≤ 𝐿$[0]:

𝐿@AB.append(𝐿-.pop())
Else:

𝐿@AB.append(𝐿$.pop())
𝐿@AB.append(𝐿-)
𝐿@AB.append(𝐿$)

13

𝑂(𝑛)

Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

14

Divide: 0 comparisons
Conquer: recurse on 2 small subproblems, size >

$
Combine: 𝑛 comparisons
Recurrence:

𝑇 𝑛 = 2𝑇 >
$
+ 𝑛

Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
15

?

Tree method

16

Þ 𝑛 total / level

log$ 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

𝑇 𝑛 = .
/0-

LMNO >

𝑛 = 𝑛 log$ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Multiplication

• Want to multiply large numbers together

• What makes a “good” algorithm?
• How do we measure input size?
• What do we “count” for run time?

17

4 1 0 2
× 1 8 1 9

𝑛-digit numbers

“Schoolbook” Method

18

4 1 0 2
× 1 8 1 9
3 6 9 1 8
4 1 0 2

3 2 8 1 6
4 1 0 2
7 4 6 1 5 3 8

+

How many total
multiplications?

𝑛-digit numbers

𝑛 mults
𝑛 mults
𝑛 mults

𝑛 mults

𝑛 levels
⇒ Θ(𝑛$)

What about cost
of additions?
Θ(𝑛$)

Can we do
better?

Divide and Conquer

19

Divide and Conquer method

20

1. Break into smaller subproblems

4 1 0 2
× 1 8 1 9

a b

c d

a b+= 10
>
$

c d+= 10
>
$

()

a c×10>

a d10
>
$ ×

()

()b c×+
b d×

+

+

Divide and Conquer Multiplication

• Divide:
– Break 𝑛-digit numbers into four numbers of ⁄> $ digits each

(call them 𝑎, 𝑏, 𝑐, 𝑑)
• Conquer:
– If 𝑛 > 1:

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑
– If 𝑛 = 1: (i.e. one digit each)

• Compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 directly (base case)

• Combine:
10> 𝑎𝑐 + 10

]
O 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

21

Divide and Conquer method

22

10> 𝑎𝑐 + 10
>
$ 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛 = 4𝑇
𝑛
2 + 5𝑛

2. Use recurrence relation to express recursive running time

Divide and Conquer method

23

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

3. Use asymptotic notation to simplify

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2LMNO > ⋅ 5𝑛

…

𝑇 𝑛 = 5𝑛 .
/01

LMNO >

2/

Divide and Conquer method

24

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

3. Use asymptotic notation to simplify

𝑇 𝑛 = 5𝑛 .
/01

LMNO >

2/

𝑇 𝑛 = 5𝑛
2LMNO >,- − 1

2 − 1

𝑇 𝑛 = 5𝑛(2𝑛 − 1) = Θ(𝑛$)

Karatsuba

25

4 1 0 2
× 1 8 1 9

a b

c d

a b+= 10
>
$

c d+= 10
>
$

()

a c×10>

a d10
>
$ ×

()

()b c×+
b d×

1. Break into smaller subproblems

+

+

Karatsuba

26

10> 𝑎𝑐 + 10
>
$ 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Can’t avoid these This can be
simplified

𝑎 + 𝑏 𝑐 + 𝑑 =
𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

𝑎𝑑 + 𝑏𝑐 = 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑
One multiplicationTwo

multiplications

a

×
b

c d

Karatsuba

27

10> 𝑎𝑐 + 10
>
$ 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑

Recursively solve

𝑇 𝑛 = 3𝑇
𝑛
2 + 8𝑛

2. Use recurrence relation to express recursive running time

a

×
b

c d

Karatsuba

• Divide:
– Break 𝑛-digit numbers into four numbers of ⁄> $ digits each

(call them 𝑎, 𝑏, 𝑐, 𝑑)

• Conquer:
– If 𝑛 > 1:
• Recursively compute 𝑎𝑐, 𝑏𝑑, 𝑎 + 𝑏 𝑐 + 𝑑

– If 𝑛 = 1:
• Compute 𝑎𝑐, 𝑏𝑑, 𝑎 + 𝑏 𝑐 + 𝑑 directly (base case)

• Combine:

– 10> 𝑎𝑐 + 10
]
O 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑

28

Karatsuba Algorithm

29

a

×
b

c d

1.Recursively compute: 𝑎𝑐, 𝑏𝑑, (𝑎 + 𝑏)(𝑐 + 𝑑)
2. 𝑎𝑑 + 𝑏𝑐 = 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑
3. Return 10> 𝑎𝑐 + 10

]
O 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛Pseudocode

1. 𝑥 ← Karatsuba(𝑎, 𝑐)
2. 𝑦 ← Karatsuba(𝑏, 𝑑)
3. 𝑧 ← Karatsuba(𝑎 + 𝑏, 𝑐 + 𝑑) − 𝑥 − 𝑦
4. Return 10>𝑥 + 10 ⁄> $𝑧 + 𝑦

Karatsuba

30

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

3. Use asymptotic notation to simplify

𝑛 8𝑛

8𝑛
2

8𝑛
2

8𝑛
2

𝑛
2

𝑛
2

𝑛
2

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4…𝑛

4
𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

8 8 8 8 8 8 8 8 8 8

… … … … … …

1 1 1 1 1 1 1 1 1 1…

8𝑛 ⋅ 1

8𝑛 ⋅
3
2

8𝑛 ⋅
9
4

8𝑛 ⋅
3LMNO >

2LMNO >

…

𝑇 𝑛 = 8𝑛 .
/01

LMNO >

(k3 2)
/

Karatsuba

31

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

3. Use asymptotic notation to simplify

𝑇 𝑛 = 8𝑛 .
/01

LMNO >

(k3 2)
/

𝑇 𝑛 = 8𝑛
(k3 2)

LMNO >,-−1

k3 2 − 1
Math, math, and more math…(on board, see lecture supplement)

Karatsuba

32

Karatsuba

33

Karatsuba

34

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

3. Use asymptotic notation to simplify

𝑇 𝑛 = 8𝑛 .
/01

LMNO >

(k3 2)
/

𝑇 𝑛 = 8𝑛
(k3 2)

LMNO >,-−1

k3 2 − 1

𝑇 𝑛 = 24 𝑛LMNO % − 16𝑛 = Θ(𝑛LMNO %)

Math, math, and more math…(on board, see lecture supplement)

≈ Θ(𝑛-.+n+)

35

𝑛$

𝑛-.+n+

Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
36

? (induction)

Induction (review)

37

Goal: ∀𝑘 ∈ ℕ, 𝑃(𝑘) holds

Base case(s): 𝑃 1 holds

Hypothesis: ∀𝑥 ≤ 𝑥1, 𝑃 𝑥 holds

Inductive step: show 𝑃 𝑥1 ⇒ 𝑃 𝑥1 + 1

Technically, called
strong induction

Guess and Check Intuition

• Show: 𝑇 𝑛 ∈ 𝑂(𝑔 𝑛)
• Consider: 𝑔∗ 𝑛 = 𝑐 ⋅ 𝑔(𝑛) for some constant 𝑐, i.e. pick 𝑔∗ 𝑛 ∈ 𝑂(𝑔 𝑛)
• Goal: show ∃𝑛1 such that ∀𝑛 > 𝑛1, 𝑇 𝑛 ≤ 𝑔∗(𝑛)
– (definition of big-O)

• Technique: Induction
– Base cases:

• show 𝑇 1 ≤ 𝑔∗ 1 , 𝑇 2 ≤ 𝑔∗ 2 , … for a small number of cases (may need additional base cases)
– Hypothesis:

• ∀𝑛 ≤ 𝑥1, 𝑇 𝑛 ≤ 𝑔∗(𝑛)
– Inductive step:

• Show 𝑇 𝑥1 + 1 ≤ 𝑔∗ 𝑥1 + 1
38

Need to ensure that in inductive
step, can either appeal to a base

case or to the inductive hypothesis

Karatsuba Guess and Check (Loose)

39

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Goal: 𝑇 𝑛 ≤ 3000 𝑛-.x = 𝑂(𝑛-.x)

Base cases: 𝑇 1 = 8 ≤ 3000
𝑇 2 = 3 8 + 16 = 40 ≤ 3000 ⋅ 2-.x
… up to some small 𝑘

Hypothesis: ∀𝑛 ≤ 𝑥1, 𝑇 𝑛 ≤ 3000𝑛-.x

Inductive step: Show that 𝑇 𝑥1 + 1 ≤ 3000 𝑥1 + 1 -.x

Karatsuba Guess and Check (Loose)

40

Karatsuba Guess and Check (Loose)

41

