#### CS4102 Algorithms Spring 2020

#### Warm up

Given any 5 points on the unit square, show there's always a pair distance  $\leq \frac{\sqrt{2}}{2}$  apart



# CS4102 Algorithms Spring 2020

If points  $p_1, p_2$  in same quadrant, then  $\delta(p_1, p_2) \le \frac{\sqrt{2}}{2}$ 

Given 5 points, two must share the same quadrant

#### Pigeonhole Principle!



# Today's Keywords

- Karatsuba (one last time!)
- Solving recurrences
- Cookbook Method
- Master Theorem
- Substitution Method

# CLRS Readings

• Chapter 4

# Homeworks

Friday, January 31 at 11pm

- HW1 due Thursday, January 30 at 11pm
  - Written (use Latex!) Submit BOTH pdf and zip!
  - Asymptotic notation
  - Recurrences
  - Divide and Conquer
- HW2 out tomorrow, due Thursday, February 6 at 11pm
  - Written (use Latex!)
  - Divide and Conquer
  - Master Theorem

# Recurrence Solving Techniques





"Cookbook"



Substitution

# Induction (review)

#### Goal: $\forall k \in \mathbb{N}, P(k)$ holds

Base case(s): P(1) holds

Technically, called *strong induction* 

**Hypothesis:**  $\forall x \leq x_0, P(x)$  holds

Inductive step: show  $P(1), \dots, P(x_0) \Rightarrow P(x_0 + 1)$ 

# Guess and Check Intuition

- Show:  $T(n) \in O(g(n))$
- Consider:  $g_*(n) = c \cdot g(n)$  for some constant c, i.e. pick  $g_*(n) \in O(g(n))$
- **Goal:** show  $\exists n_0$  such that  $\forall n > n_0$ ,  $T(n) \le g_*(n)$ - (definition of big-O)
- Technique: Induction
  - Base cases:
    - show  $T(1) \le g_*(1), T(2) \le g_*(2), \dots$  for a small number of cases (may need additional base cases)
  - Hypothesis:
    - $\forall n \leq x_0, T(n) \leq g_*(n)$
  - Inductive step:
    - Show  $T(x_0 + 1) \le g_*(x_0 + 1)$

Need to ensure that in inductive step, can either appeal to a <u>base</u> <u>case</u> or to the <u>inductive hypothesis</u>



1. Recursively compute: ac, bd, (a + b)(c + d)2. (ad + bc) = (a + b)(c + d) - ac - bd3. Return  $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$ 

Pseudo-code

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

- 1.  $x \leftarrow \text{Karatsuba}(a, c)$
- 2.  $y \leftarrow \text{Karatsuba}(b, d)$
- 3.  $z \leftarrow \text{Karatsuba}(a + b, c + d) x y$
- 4. Return  $10^n x + 10^{n/2} z + y$

#### Karatsuba

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$
$$T(n) = 8n \frac{(3/2)^{\log_2 n+1} - 1}{3/2 - 1}$$

Math, math, and more math...(on board, see lecture supplement)

$$T(n) = 24(n^{\log_2 3}) - 16n = \Theta(n^{\log_2 3}) \approx \Theta(n^{1.585})$$

#### Karatsuba Guess and Check

Goal: 
$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
  
 $T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$ 

$$g_{x}(n) = 24n^{10} g_{x}^{3} - 16n$$

**Base cases:** by inspection, holds for small *n* (at home)

Hypothesis: 
$$\forall n \leq x_0, T(n) \leq 24n^{\log_2 3} - 16n$$

Inductive step:  $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$ 

#### Karatsuba Guess and Check

$$T(n) = 3T(\frac{n}{2}) + 8n$$
Hyp:  $\forall n \leq x$ .  $T(n) \leq 2^{4} n^{\log_{2} 3} - 16 n$ 
Inductive step: show  $T(x_{0}+1) \leq 2^{4} (x_{0}+1)^{\log_{2} 3} - 16(x_{0}+1)$ 

$$T(x_{0}+1) = 3T(\frac{|x_{0}+1|}{2}) + 8(x_{0}+1)$$

$$\leq 3(2^{4} (\frac{|x_{0}+1|}{2})^{\log_{2} 3} - 16(\frac{|x_{0}+1|}{2})) + 8(x_{0}+1)$$

$$= 3(\frac{2^{4} (x_{0}+1)^{\log_{2} 3}}{3} - 8(x_{0}+1)) + 8(x_{0}+1)$$

$$= 2^{4} ((x_{0}+1)^{\log_{2} 3} - 2^{4} (x_{0}+1) + 8(x_{0}+1)$$

$$= 2^{4} (|x_{0}+1|)^{\log_{2} 3} - 16(x_{0}+1)$$
Therefore  $T(n) \in O(n^{\log_{2} 3})$ 

#### What if we leave out the -16n?

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Goal: 
$$T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:  $\forall n \le x_0, T(n) \le 24n^{\log_2 3} - 16n$ 

Inductive step: 
$$T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$$

What we wanted:  $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3}$  Induction failed! What we got:  $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} + 8(x_0 + 1)$ 

## "Bad Mergesort" Guess and Check

$$T(n) = 2T\left(\frac{n}{2}\right) + 209n$$

Goal: 
$$T(n) \le 209n \log_2 n = O(n \log_2 n)$$

Base cases: T(1) = 0  $T(2) = 518 \le 209 \cdot 2 \log_2 2$ ... up to some small k

**Hypothesis:**  $\forall n \le x_0, T(n) \le 209n \log_2 n$ 

Inductive step:  $T(x_0 + 1) \le 209(x_0 + 1)\log_2(x_0 + 1)$ 

Prove this on your own

# Recurrence Solving Techniques









Substitution

# Observation

- **Divide:** D(n) time
- Conquer: recurse on small problems, size S
- Combine: C(n) time
- Recurrence:

$$T(n) = D(n) + \sum T(s) + C(n)$$

• Many D&C recurrences are of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$
 where  $f(n) = D(n) + C(n)$ 

#### Remember...

• Better Attendance:  $T(n) = T\left(\frac{n}{2}\right) + 2$ 

• MergeSort: 
$$T(n) = 2 T\left(\frac{n}{2}\right) + n$$

• D&C Multiplication: 
$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

• Karatsuba: 
$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$



#### 3 Cases

 $L = \log_b n$ 



# Master Theorem

$$T(n) = \frac{a}{b}T\left(\frac{n}{b}\right) + f(n)$$

Case 1: if  $f(n) \in O(n^{\log_b a} - \varepsilon)$  for some constant  $\varepsilon > 0$ , then  $T(n) \in \Theta(n^{\log_b a})$ 

Case 2: if 
$$f(n) \in \Theta(n^{\log_b a})$$
, then  $T(n) \in \Theta(n^{\log_b a} \log n)$ 

Case 3: if 
$$f(n) \in \Omega(n^{\log_b a + \varepsilon})$$
 for some constant  $\varepsilon > 0$ ,  
and if  $af\left(\frac{n}{b}\right) \leq cf(n)$  for some constant  $c < 1$   
and all sufficiently large  $n$ ,  
then  $T(n) \in \Theta(f(n))$ 

#### Proof of Case 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right),$$

$$f(n) \in O(n^{\log_b a - \varepsilon}) \Rightarrow f(n) \le c \cdot n^{\log_b a - \varepsilon}$$

Insert math here...

#### Proof of Case 1



# Proof of Case 1

$$T(n) \leq \underline{c_{s}c} n^{\log_{9}n - \epsilon} (n^{\epsilon} - 1) + \underline{c_{3}n^{\log_{9}n}}$$
$$= \underline{c_{4}} n^{\log_{9}n} - \underline{c_{4}} n^{\log_{9}n - \epsilon} + \underline{c_{3}} n^{\log_{9}n}$$
$$= \underline{c_{5}} n^{\log_{9}n} - \underline{c_{4}} n^{\log_{9}n - \epsilon}$$
$$\leq \underline{c_{5}} n^{\log_{9}n} \in O(n^{\log_{9}n})$$

Conclusion:  $T(n) = O(n^{\log_b a})$