CS4102 Algorithms Spring 2020

<u>Warm up</u>

Given 5 points on the unit equilateral triangle, show there's always a pair of distance $\leq \frac{1}{2}$ apart

CS4102 Algorithms Spring 2020

If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \leq \frac{1}{2}$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Today's Keywords

- Divide and Conquer
- Closest Pair of Points

CLRS Readings

• Chapter 4

Homeworks

- HW2 due Thursday 2/6 at 11pm
 - Written (use Latex!) Submit BOTH pdf and zip!
 - Asymptotic notation
 - Recurrences
 - Master Theorem
 - Divide and Conquer

Recurrence Solving Techniques

Substitution

Master Theorem

$$T(n) = \frac{a}{b}T\left(\frac{n}{b}\right) + f(n)$$

Case 1: if $f(n) \in O(n^{\log_b a} - \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) \in \Theta(n^{\log_b a})$

Case 2: if
$$f(n) \in \Theta(n^{\log_b a})$$
, then $T(n) \in \Theta(n^{\log_b a} \log n)$

Case 3: if
$$f(n) \in \Omega(n^{\log_b a + \varepsilon})$$
 for some constant $\varepsilon > 0$,
and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant $c < 1$
and all sufficiently large n ,
then $T(n) \in \Theta(f(n))$

3 Cases

 $L = \log_b n$

Historical Aside: Master Theorem

Jon Bentley

Dorothea Haken

James Saxe

Master Theorem Example 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Case 2

$$\Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

Master Theorem Example 2

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Case 1

$$\Theta(n^{\log_2 4}) = \Theta(n^2)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Cost is <u>increasing</u> with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Case 1

$$\Theta(n^{\log_2 3}) \approx \Theta(n^{1.5})$$

Karatsuba

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a} \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Case 3

 $\Theta(n^3)$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Cost is <u>decreasing</u> with the recursion depth (due to high *non-recursive* cost)

Most of the work happening at the top

Recurrence Solving Techniques

"Cookbook"

Substitution Method

- Idea: take a "difficult" recurrence, re-express it such that one of our other methods applies.
- Example:

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

$$\log_2 n^{1/2} = \frac{1}{2} \log_2 n$$

 $T(n) = O(\log_2 n \cdot \log_2 \log_2 n)$

Substitution Method

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

= $2T(n^{1/2}) + \log_2 n$
^{I don't} the

like the ½ in exponent

Let
$$n = 2^m$$
, i.e. $m = \log_2 n$
 $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$ Rewrite in terms of exponent!
Let $S(m) = 2S\left(\frac{m}{2}\right) + m$ Case 2!
Let $S(m) = \Theta(m \log m)$ Substitute Back
Let $T(n) = \Theta(\log n \log \log n)$
Substitute Back
Let $T(n) = \Theta(\log n \log \log n)$

$$n = 2^m \qquad T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$$

$$n = 2^m$$
 $T(2^m) = 2T(2^{m/2}) + m$

 $T(n) = O(m \cdot \log_2 m) = O(\log_2 n \cdot \log_2 \log_2 n)$