
Spring 2020

Warm up
Given 5 points on the unit equilateral
triangle, show there’s always a pair of

distance ≤ "
#

apart

1

1

1

1

If points 𝑝", 𝑝# in same quadrant, then 𝛿 𝑝", 𝑝# ≤ "
#

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Spring 2020

2

1

1

1

Today’s Keywords

• Divide and Conquer
• Closest Pair of Points

3

CLRS Readings

• Chapter 4

4

Homeworks

• HW2 due Thursday 2/6 at 11pm
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Master Theorem
– Divide and Conquer

5

Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
6

?

Master Theorem

Case 1: if 𝑓 𝑛 ∈ 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0,
then 𝑇 𝑛 ∈ Θ 𝑛,-./ 0

Case 2: if 𝑓 𝑛 ∈ Θ(𝑛,-./ 0), then 𝑇 𝑛 ∈ Θ(𝑛,-./ 0 log 𝑛)

Case 3: if 𝑓 𝑛 ∈ Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0,
and if 𝑎𝑓 ?

@
≤ 𝑐𝑓(𝑛) for some constant 𝑐 < 1

and all sufficiently large 𝑛,
then 𝑇 𝑛 ∈ Θ(𝑓 𝑛)

7

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)

3 Cases

8

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎#𝑓

𝑛
𝑏#

+ 𝑎G𝑓
𝑛
𝑏G

+⋯+ 𝑎I𝑓(
𝑛
𝑏I
)

Case 1:
Most work
happens at
the leaves

Case 2:
Work happens
consistently
throughout

Case 3:
Most work
happens at
top of tree

𝐿 = log@ 𝑛

Historical Aside: Master Theorem

9

Jon Bentley Dorothea Haken James Saxe

No Picture Found

Master Theorem Example 1

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

10

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏 + 𝑓(𝑛)

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

Case 2
Θ 𝑛,-.L # log 𝑛 = Θ(𝑛 log 𝑛)

Tree method

11

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

+

+ + +

+ + + + +

log# 𝑛

Master Theorem Example 2

12

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

Case 1
Θ 𝑛,-.L Q = Θ(𝑛#)

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏 + 𝑓(𝑛)

Tree method

13

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2,-.L ? ⋅ 5𝑛

…

Tree method

14

𝑇 𝑛 = 4𝑇
𝑛
2
+ 5𝑛

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2,-.L ? ⋅ 5𝑛

…

Cost is increasing with the recursion depth
(due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

15

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

Case 1
Θ 𝑛,-.L G ≈ Θ(𝑛".X)

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏 + 𝑓(𝑛)

Karatsuba

16

𝑇 𝑛 = 3𝑇
𝑛
2
+ 8𝑛

𝑛 8𝑛

8𝑛
2

8𝑛
2

8𝑛
2

𝑛
2

𝑛
2

𝑛
2

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4

8𝑛
4…𝑛

4
𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

8 8 8 8 8 8 8 8 8 8

… … … … … …

1 1 1 1 1 1 1 1 1 1…

8 ⋅ 1𝑛

8
2
⋅ 3𝑛

8
4
⋅ 9𝑛

8
2,-.L ?

⋅ 3,-.L ?𝑛

…

Master Theorem Example 4

17

𝑇 𝑛 = 2𝑇
𝑛
2
+ 15𝑛G

Case 3
Θ 𝑛G

• Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛,-./ 0)
• Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

• Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, and if 𝑎𝑓 ?
@
≤ 𝑐𝑓(𝑛) for some constant

𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓 𝑛)

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏 + 𝑓(𝑛)

Tree method

18

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 15𝑛G

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

15𝑛G

15
𝑛
2

G
15

𝑛
2

G

15
𝑛
4

G
15

𝑛
4

G
15

𝑛
4

G

15
𝑛
4

G

15 15 15 1515 15

15𝑛G

15𝑛G

4
15𝑛G

16

15 log# 𝑛

+

+ + +

+ + + + +

log# 𝑛

Tree method

19

𝑇 𝑛 = 2𝑇
𝑛
2

+ 15𝑛G

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top

15𝑛G

15𝑛G

4
15𝑛G

16

15 log# 𝑛

log# 𝑛

Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
20

?

Substitution Method

• Idea: take a “difficult” recurrence, re-express it such that one
of our other methods applies.

• Example:

21

𝑇 𝑛 = 2𝑇 𝑛 + log# 𝑛

Tree method

22

𝑛

𝑇 𝑛 = 2𝑇(𝑛) + log# 𝑛

𝑛 𝑛

𝑛 𝑛 𝑛 𝑛

… … … …

2 2 2 … 2 2 2

log# 𝑛

1
2 log# 𝑛

1
2 log# 𝑛

1
4 log# 𝑛

1
4 log# 𝑛

1
4 log# 𝑛

1
4 log# 𝑛

1 1 1 11 1

log# 𝑛

log# 𝑛

log# 𝑛

log# 𝑛

+

+ + +

+ + + + +

log# log# 𝑛

𝑇 𝑛 = 𝑂(log# 𝑛 ⋅ log# log# 𝑛)

log# 𝑛"/# =
1
2 log# 𝑛

Substitution Method

23

𝑇 𝑛 = 2𝑇 𝑛 + log# 𝑛

Let 𝑛 = 2Z, i.e. 𝑚 = log# 𝑛

Let 𝑆 𝑚 = 2𝑆 Z
#
+ 𝑚

𝑇 2Z = 2𝑇 2
Z
+ 𝑚 Rewrite in terms of exponent!

Case 2!

Let 𝑆 𝑚 = Θ(𝑚 log𝑚) Substitute Back

Let T 𝑛 = Θ(log 𝑛 log log 𝑛)

𝑇 𝑛 = 2𝑇 𝑛"/# + log# 𝑛
I don’t like the ½ in

the exponent

Now the variable is in the
exponent on both sides!

S will operate exactly as T, just
redefined in terms of the

exponent

𝑆 𝑚 = 𝑇(2Z)

Tree method

24

𝑛

𝑇 𝑛 = 2𝑇(𝑛) + log# 𝑛

𝑛 𝑛

𝑛 𝑛 𝑛 𝑛

… … … …

2 2 2 … 2 2 2

log# 𝑛

1
2 log# 𝑛

1
2 log# 𝑛1

4 log# 𝑛
1
4 log# 𝑛

1
4 log# 𝑛

1
4 log# 𝑛

1 1 1 11 1

log# 𝑛

log# 𝑛

log# 𝑛

log# 𝑛

+

+ + +

+ + + + +

log# log# 𝑛

𝑛 = 2Z 𝑇 2Z = 2𝑇 2
Z
+𝑚

2Z

2Z/# 2Z/#

2Z/Q 2Z/Q 2Z/Q 2Z/Q

Tree method

25

2Z

𝑇 2Z = 2𝑇(2Z/#) + 𝑚

2Z/# 2Z/#

2Z/Q 2Z/Q 2Z/Q 2Z/Q

… … … …

2" 2" 2" … 2" 2" 2"

𝑚

𝑚
2

𝑚
2

𝑚
4

𝑚
4

𝑚
4

𝑚
4

1 1 1 11 1

𝑚

𝑚

𝑚

𝑚

+

+ + +

+ + + + +

log#𝑚

𝑛 = 2Z

Tree method

26

𝑚

𝑚/2 𝑚/2

𝑚/4 𝑚/4 𝑚/4 𝑚/4

… … … …

1 1 1 … 1 1 1

𝑚

𝑚
2

𝑚
2

𝑚
4

𝑚
4

𝑚
4

𝑚
4

1 1 1 11 1

𝑚

𝑚

𝑚

𝑚

+

+ + +

+ + + + +

log#𝑚

𝑇 𝑛 = 𝑂(𝑚 ⋅ log# 𝑚)

𝑛 = 2Z
𝑇 2Z = 𝑆(𝑚)

𝑆 𝑚 = 2𝑆
𝑚
2

+𝑚

= 𝑂(log# 𝑛 ⋅ log# log# 𝑛)

