
Spring 2020

1

Warm up
Simplify:

1 + 2 + 3 +⋯+ (𝑛 − 1) + 𝑛 =



2

1 + 2 + 3 +⋯+ (𝑛 − 1) + 𝑛 =

𝑛 + 1

𝑛

𝑛 𝑛 + 1
2



Today’s Keywords

• Divide and Conquer
• Closest Pair of Points
• Matrix Multiplication
• Strassen’s Algorithm

3



CLRS Readings

• Chapter 4
• Chapter 33

4



Homeworks

• HW2 due Thursday 2/6 at 11pm
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Master Theorem
– Divide and Conquer

• HW3 coming Thursday
– Programming! (Java or Python 2/3)

5



Robbie’s Yard

6



There has to be an easier way!

8



Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how 
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000

9



Closest Pair of Points

10

1
2

3

4
5

6

7

8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart



Closest Pair of Points: Naïve

11

1
2

3

4
5

6

7

8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart

𝑂(𝑛,)Algorithm:
Test every pair of points, 
return the closest.

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate

12

Conquer: 

Combine: 



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 

13



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
Return min of Left and 
Right pairs Problem? ?

14



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans our 
“Cut”

Need to test points 
across the cut

15



Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿2

𝛿3
Compare all points 
within 𝛿 = min{𝛿2, 𝛿3}
of the cut.

2𝛿
How many are there?

16



Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿2

𝛿3

2𝛿

Compare all points 
within 𝛿 = min{𝛿2, 𝛿3}
of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2 +

𝑛
2

,

17

= Θ 𝑛,



Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿2

𝛿3

2𝛿

We don’t need to test all 
pairs!

Only need to test points 
within 𝛿 of one another

18



Reducing Search Space
Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into 
square cubbies of size <

,

Each cubby will have at most 1 
point!

19



Reducing Search Space

20

2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 15 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

Divide the “runway” into 
square cubbies of size <

,



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still 
too expensive! We need 𝑂(𝑛)



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 
𝑦-coordinate

Sorting runway points by 
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Listing Points in the Runway

1
2

3

4
5

6

7

8

24

Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿C,D
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿J,K
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Matrix Multiplication

30

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛Q)

𝑛

𝑛



Matrix Multiplication D&C

31

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎C 𝑎, 𝑎Q 𝑎J
𝑎D 𝑎K 𝑎U 𝑎V
𝑎W 𝑎CX 𝑎CC 𝑎C,
𝑎CQ 𝑎CJ 𝑎CD 𝑎CK

𝐵 =

𝑏C 𝑏, 𝑏Q 𝑏J
𝑏D 𝑏K 𝑏U 𝑏V
𝑏W 𝑏CX 𝑏CC 𝑏C,
𝑏CQ 𝑏CJ 𝑏CD 𝑏CK

Divide:



Matrix Multiplication D&C

32

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎C 𝑎, 𝑎Q 𝑎J
𝑎D 𝑎K 𝑎U 𝑎V
𝑎W 𝑎CX 𝑎CC 𝑎C,
𝑎CQ 𝑎CJ 𝑎CD 𝑎CK

𝐴C,C 𝐴C,,

𝐴,,C 𝐴,,,

𝐴𝐵 =
𝐴C,C𝐵C,C + 𝐴C,,𝐵,,C 𝐴C,C𝐵C,, + 𝐴C,,𝐵,,,
𝐴,,C𝐵C,C + 𝐴,,,𝐵,,C 𝐴,,C𝐵C,, + 𝐴,,,𝐵,,,

𝐵 =

𝑏C 𝑏, 𝑏Q 𝑏J
𝑏D 𝑏K 𝑏U 𝑏V
𝑏W 𝑏CX 𝑏CC 𝑏C,
𝑏CQ 𝑏CJ 𝑏CD 𝑏CK

𝐵C,C 𝐵C,,

𝐵,,C 𝐵,,,

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

, Cost of 
additions

Combine:



Matrix Multiplication D&C

33

𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

,

𝑇 𝑛 = 8𝑇
𝑛
2
+ Θ(𝑛,)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛,

𝑛[\]^ _ = 𝑛[\]` V = 𝑛Q
Case 1!

𝑇 𝑛 = Θ(𝑛Q)
We can do better…



Matrix Multiplication D&C

34

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎C 𝑎, 𝑎Q 𝑎J
𝑎D 𝑎K 𝑎U 𝑎V
𝑎W 𝑎CX 𝑎CC 𝑎C,
𝑎CQ 𝑎CJ 𝑎CD 𝑎CK

𝐴C,C 𝐴C,,

𝐴,,C 𝐴,,,

𝐴𝐵 =
𝐴C,C𝐵C,C + 𝐴C,,𝐵,,C 𝐴C,C𝐵C,, + 𝐴C,,𝐵,,,
𝐴,,C𝐵C,C + 𝐴,,,𝐵,,C 𝐴,,C𝐵C,, + 𝐴,,,𝐵,,,

𝐵 =

𝑏C 𝑏, 𝑏Q 𝑏J
𝑏D 𝑏K 𝑏U 𝑏V
𝑏W 𝑏CX 𝑏CC 𝑏C,
𝑏CQ 𝑏CJ 𝑏CD 𝑏CK

𝐵C,C 𝐵C,,

𝐵,,C 𝐵,,,

Idea: Use a Karatsuba-like technique on this



Strassen’s Algorithm

35

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎C 𝑎, 𝑎Q 𝑎J
𝑎D 𝑎K 𝑎U 𝑎V
𝑎W 𝑎CX 𝑎CC 𝑎C,
𝑎CQ 𝑎CJ 𝑎CD 𝑎CK

𝐴C,C 𝐴C,,

𝐴,,C 𝐴,,,
𝐵 =

𝑏C 𝑏, 𝑏Q 𝑏J
𝑏D 𝑏K 𝑏U 𝑏V
𝑏W 𝑏CX 𝑏CC 𝑏C,
𝑏CQ 𝑏CJ 𝑏CD 𝑏CK

𝐵C,C 𝐵C,,

𝐵,,C 𝐵,,,
Calculate:

𝑄C = 𝐴C,C + 𝐴,,, (𝐵C,C + 𝐵,,,)
𝑄, = 𝐴,,C + 𝐴,,, 𝐵C,C
𝑄Q = 𝐴C,C(𝐵C,, − 𝐵,,,)
𝑄J = 𝐴,,,(𝐵,,C − 𝐵C,C)

𝑄K = 𝐴,,C − 𝐴C,C (𝐵C,C + 𝐵C,,)
𝑄D = 𝐴C,C + 𝐴C,, 𝐵,,,

𝑄U = 𝐴C,, − 𝐴,,, (𝐵,,C + 𝐵,,,)

𝐴C,C𝐵C,C + 𝐴C,,𝐵,,C 𝐴C,C𝐵C,, + 𝐴C,,𝐵,,,
𝐴,,C𝐵C,C + 𝐴,,,𝐵,,C 𝐴,,C𝐵C,, + 𝐴,,,𝐵,,,

𝑄C + 𝑄J − 𝑄D + 𝑄U 𝑄Q + 𝑄D
𝑄, + 𝑄J 𝑄C − 𝑄, + 𝑄Q + 𝑄K

Find 𝐴𝐵:

Number Mults.: 7 Number Adds.: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛,



Strassen’s Algorithm

36

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛,

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛,

𝑛[\]^ _ = 𝑛[\]` U ≈ 𝑛,.VXU
Case 1!

𝑇 𝑛 = Θ 𝑛[\]` U ≈ Θ(𝑛,.VXU)



37

𝑛Q

𝑛[\]` U

Strassen’s Algorithm



Is this the fastest?

38

Best possible 
is unknown

May not even 
exist!


