Recursion

- Recursion breaks a difficult problem into one or more simpler versions of itself
- A definition is **recursive** if it is defined in terms of itself
- Questions to ask yourself:
 - How can we reduce the problem into smaller version of the same problem?
 - How does each call make the problem smaller?
 - What is the **base case**?
 - Will we always reach the base case?
<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
</tr>
<tr>
<td>The case for which the solution can be stated nonrecursively</td>
</tr>
<tr>
<td>Recursive case</td>
</tr>
<tr>
<td>The case for which the solution is expressed in terms of a smaller version of itself</td>
</tr>
</tbody>
</table>
Views of Recursion

- **Recursive definition**: definition in terms of itself, such as
 \[n! = n \times (n - 1)! \]
- **Recursive procedure**: a procedure that calls itself
 ex: `factorial(int n)`
- **Recursive data structure**: a data structure that contains a pointer to an instance of itself:

  ```java
  public class ListNode {
      Object nodeItem;
      ListNode next, previous;
      ...
  }
  ```
Given an 8×8 board with one piece missing, tile with L-shaped trominoes.

Interactive: http://goo.gl/npFQUD
Tromino Puzzle

Given an 8×8 board with one piece missing, tile with L-shaped trominoes.

Interactive: http://goo.gl/npFQUD
Tromino Puzzle

Given an 8×8 board with one piece missing, tile with L-shaped trominoes.

Interactive: http://goo.gl/npFQUD
Other Recursive Examples

- Towers of Hanoi
- Euclid’s Algorithm
- Fractals
The objective is to transfer entire tower A to the peg B, moving only one disk at a time and never moving a larger one onto a smaller one.

- The algorithm to transfer n disks from A to B in general: We first transfer \(n - 1 \) smallest disks to peg C, then move the largest one to the peg B and finally transfer the \(n - 1 \) smallest back onto largest (peg B).

- The number of necessary moves to transfer n disks can be found by \(T(n) = 2^n - 1 \).
Calculating the greatest common divisor (gcd) of two positive integers is the largest integer that divides evenly into both of them

- E.g. greatest common divisor of 102 and 68 is 34 since both 102 and 68 are multiples of 34, but no integer larger than 34 divides evenly into 102 and 68
- Logic: If $p > q$, the gcd of p and q is the same as the gcd of q and $p \% q$ (where $\%$ is the remainder operator)
- Stop recursion once q becomes zero; at which point return p
• Recursion breaks a difficult problem into one or more simpler versions of itself

• Recursive definition: A definition in which something is defined in terms of smaller versions of itself

• Recursive problem can be broken into two parts:
 • Base case: The case for which the solution can be stated nonrecursively
 • Recursive case: The case for which the solution is expressed in terms of a smaller version of itself
Recursion is tricky!

- Always put base case first
- Base case should eventually happen given any input
- Recursive solution may not always be the best