Divide and Conquer

CS 2110: Software Development Methods
April 12, 2019

Recursion

- Recursion breaks a difficult problem into one or more simpler
versions of itself
- A definition is recursive if it is defined in terms of itself
- Questions to ask yourself:
- How can we reduce the problem into smaller version of the same

problem?
- How does each call make the problem smaller?

- What is the base case?
- Will we always reach the base case?

Base case
The case for which the solution can be stated nonrecursively

Recursive case
The case for which the solution is expressed in terms of a smaller

version of itself

public int factorial(int n) {
// base case (always first)
if (n <= 0)
return 1;

// recursive case
return n * factorial(n-1);

Recursion Summary

Recursion is tricky!

- Always put base case first
- Base case should eventually happen given any input
- Recursive solution may not always be the best

Divide and Conquer

Divide and Conquer: putting recursion to work for you!

- An algorithm design strategy, one of many you will learn

- Strategy: It's often easier to solve several small instances of a
problem rather than one large problem

- Divide the problem into k smaller instances
- Conquer: solve each of those k problems (recursively)
- Combine the solutions to subproblems into one final solution
- Note: must have a base case to solve really small problems

directly

Divide and Conquer: Strategy

solve(A) { // solve for input A

n = size(A) // size of our problem is n

// base case

if (n <= smallSize) { // problem is small enough
solution = directlySolve(A)

} else { // recursive case
divide A into A1, A2, ..., Ak
for each i in {1, ..., k}:

Si = solve(Ai) // conquer each sub-problem

solution = combine(S1, S2, ..., Sk)

}

return solution

Divide and Conquer: Why?

- Sometimes it is the simplest approach

- May be more efficient than an “obvious” approach
- Ex: Binary Search instead of Sequential Search
- Ex: Mergesort or Quicksort instead of Insertion Sort

- Not necessarily the most efficient solution

- Divide and Conquer algorithms illustrate a top-down strategy

- Given a large problem, identify and break into smaller subproblems,
then combine the results

Tromino Puzzle

Given an 8 x 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD

http://goo.gl/npFQUD

Tromino Puzzle

Given an 8 x 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD

http://goo.gl/npFQUD

Tromino Puzzle

Given an 8 x 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD

http://goo.gl/npFQUD

L]

Tromino Puzzle

Base case: simple enough to solve without recursion!

=

n

Binary Search

Quickly turn to page 394 (without magic)

Turn to page 394

Binary Search: Recursive

int binSearch(int[] array, int first, int last, int target) {
if (first <= last) {
int mid = (first + last) / 2;
if (target == array[mid])
return mid;
if (target < array[mid])
return binSearch(array, first, mid - 1, target);
else if (target > array[mid]);
return binSearch(array, mid + 1, last, target);

}

return -1;

13

Binary Search: Iterative

int binSearch(int[] array, int target) {
int first = 0;
int last = array.length - 1;
while (first <= last) {
int mid = (first + last) / 2;
if (target == array[mid])
return mid;
if (target < array[mid])
last = mid - 1;
else if (target > array[mid]);
first = mid + 1;
}

return -1;

14

Specification
- Input: Array E and indices first and last

- Output: Sorted rearrangement of the elements in E between
first and last

Mergesort is a classic example of Divide and Conquer

- Divide: split the array into two halves
- Conquer: call mergesort() to recursively sort the two halves
- Combine: combine the two sorted halves into one final sorted

array
- This is the merge step of mergesort, and where it gets its name!

Base case: 15

Specification
- Input: Array E and indices first and last

- Output: Sorted rearrangement of the elements in E between
first and last

Mergesort is a classic example of Divide and Conquer

- Divide: split the array into two halves
- Conquer: call mergesort() to recursively sort the two halves
- Combine: combine the two sorted halves into one final sorted

array
- This is the merge step of mergesort, and where it gets its name!

Base case: 1 element (sorted) or 2 elements (compare and swap)

p q r
1 2 3 4 5 6 7

73 iz 91 6] 2]

divide / \

P q r P q r
4 5 6 7

0O 1 2 3
divide Y '\ Y '\

pg r pq r pq r pq r
0 1 2 3

Bh [s]2)
divide ¥ \ ¥ \ ¥ \ ¥ \

p.r p.r p.r p.r p.r p.r p.r p.r
(2 3 5 6

W @ B E e R

https:/ /www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview- of- merge-sort

16

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

merge “’ \ *
y r
3

merge

merge \ /

P q r
1 2 3 4 5 6 17

23 6 [7Toii]12]14)

16

https:/ /www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview- of- merge-sort

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort

3]
divide y'd
P q r P q r
0 2 3 4 6
DGEIE
divide

divide ¥ \
.

merge \ *

P49
L2 [
merge / \ /
P q r P q r
0 1 2 3 4 5 6 7
merge \ /
,

0 1 2 ‘(4 5 6

https:/ /www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview- of-merge-sort

16

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort

Mergesort

Mergesort in code:

public static void mergeSort(Element[] E, int first, int last) {
if (first < last) { // base case == 1 element
int mid = (first + last) / 2;
mergeSort(E, first, mid); // sort first half
mergeSort(E, mid + 1, last); // sort second half
merge(E, first, mid, last); // merge two halves

17

Mergesort

public static void merge(Element[] E, int first, int mid, int last) {
Element[] C = new Element[last-first+1];
int a = first;
int b = mid + 1;
int 1 = 0;
while (a <= mid &§ b <= last) {
if (E[a] <= E[b])
C[i++] = E[a++];
else
C[i++] = E[b++];
}
while (a <= mid)
Cli++] = E[a++];
while (b <= last)
C[i++] = E[b++];
for (int j = 0; j < C.length; j++)
E[first + j] = C[j];

Mergesort is O(nlogn)

- Same order-class as the most efficient sorts (quicksort,
heapsort)

- Faster than Selection Sort, Bubble Sort, and Insertion sort

- Plug: Take CS 2150 and CS 4102 to study the efficiency of this
and other recursive algorithms!

- The Divide and Conquer approach matters, and in this case,
it's a “‘win!”

19

Recursion

Recursion is a natural way to solve many problems

- Sometimes it's a clever way to solve a problem that is not
clearly recursive

- Sometimes it produces an efficient solution (mergesort)
- Sometimes it produces a less efficient solution (fibonacci)

- Whether or not to use recursion is a design decision for your
“toolbox”

20

Recursion

Don't forget the rules of recursion

- Identify one or more (simple) base cases that can be solved
without recursion

- Handle these FIRST in your code!

- Determine what recursive call(s) are needed to solve the
subproblems

- Note how to use the results to solve the larger problem

- Hint: At this step, don’t think about how recursive calls
process smaller inputs, just assume they work!

21

