
Divide and Conquer

CS 2110: Software Development Methods
April 12, 2019



Recursion

• Recursion breaks a difficult problem into one or more simpler
versions of itself

• A definition is recursive if it is defined in terms of itself
• Questions to ask yourself:

• How can we reduce the problem into smaller version of the same
problem?

• How does each call make the problem smaller?
• What is the base case?
• Will we always reach the base case?

2



Definitions

Base case
The case for which the solution can be stated nonrecursively

Recursive case
The case for which the solution is expressed in terms of a smaller
version of itself

3



Factorial

public int factorial(int n) {
// base case (always first)
if (n <= 0)

return 1;

// recursive case
return n * factorial(n-1);

}

4



Recursion Summary

Recursion is tricky!

• Always put base case first
• Base case should eventually happen given any input
• Recursive solution may not always be the best

5



Divide and Conquer

Divide and Conquer: putting recursion to work for you!

• An algorithm design strategy, one of many you will learn
• Strategy: It’s often easier to solve several small instances of a
problem rather than one large problem

• Divide the problem into k smaller instances
• Conquer: solve each of those k problems (recursively)
• Combine the solutions to subproblems into one final solution

• Note: must have a base case to solve really small problems
directly

6



Divide and Conquer: Strategy

solve(A) { // solve for input A
n = size(A) // size of our problem is n
// base case
if (n <= smallSize) { // problem is small enough

solution = directlySolve(A)
} else { // recursive case

divide A into A1, A2, ..., Ak
for each i in {1, ..., k}:

Si = solve(Ai) // conquer each sub-problem
solution = combine(S1, S2, ..., Sk)

}
return solution

}

7



Divide and Conquer: Why?

• Sometimes it is the simplest approach
• May be more efficient than an “obvious” approach

• Ex: Binary Search instead of Sequential Search
• Ex: Mergesort or Quicksort instead of Insertion Sort

• Not necessarily the most efficient solution
• Divide and Conquer algorithms illustrate a top-down strategy

• Given a large problem, identify and break into smaller subproblems,
then combine the results

8



Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

http://goo.gl/npFQUD


Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

http://goo.gl/npFQUD


Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

http://goo.gl/npFQUD


Tromino Puzzle

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

10



Tromino Puzzle

Base case: simple enough to solve without recursion!

Tromino Puzzle

Given an 8× 8 board with one piece missing, tile with L-shaped
trominoes.

Interactive: http://goo.gl/npFQUD
9

11



Binary Search

Quickly turn to page 394 (without magic)

12



Binary Search: Recursive

int binSearch(int[] array, int first, int last, int target) {
if (first <= last) {

int mid = (first + last) / 2;
if (target == array[mid])

return mid;
if (target < array[mid])

return binSearch(array, first, mid - 1, target);
else if (target > array[mid]);

return binSearch(array, mid + 1, last, target);
}
return -1;

}

13



Binary Search: Iterative

int binSearch(int[] array, int target) {
int first = 0;
int last = array.length - 1;
while (first <= last) {

int mid = (first + last) / 2;
if (target == array[mid])

return mid;
if (target < array[mid])

last = mid - 1;
else if (target > array[mid]);

first = mid + 1;
}
return -1;

}

14



Mergesort

Specification

• Input: Array E and indices first and last
• Output: Sorted rearrangement of the elements in E between
first and last

Mergesort is a classic example of Divide and Conquer

• Divide: split the array into two halves
• Conquer: call mergesort() to recursively sort the two halves
• Combine: combine the two sorted halves into one final sorted
array

• This is the merge step of mergesort, and where it gets its name!

Base case: 15



Mergesort

Specification

• Input: Array E and indices first and last
• Output: Sorted rearrangement of the elements in E between
first and last

Mergesort is a classic example of Divide and Conquer

• Divide: split the array into two halves
• Conquer: call mergesort() to recursively sort the two halves
• Combine: combine the two sorted halves into one final sorted
array

• This is the merge step of mergesort, and where it gets its name!

Base case: 1 element (sorted) or 2 elements (compare and swap) 15



Mergesort

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort
16

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort


Mergesort

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort
16

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort


Mergesort

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort 16

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/overview-of-merge-sort


Mergesort

Mergesort in code:
public static void mergeSort(Element[] E, int first, int last) {

if (first < last) { // base case == 1 element
int mid = (first + last) / 2;
mergeSort(E, first, mid); // sort first half
mergeSort(E, mid + 1, last); // sort second half
merge(E, first, mid, last); // merge two halves

}
}

17



Mergesort
public static void merge(Element[] E, int first, int mid, int last) {

Element[] C = new Element[last-first+1];
int a = first;
int b = mid + 1;
int i = 0;
while (a <= mid && b <= last) {

if (E[a] <= E[b])
C[i++] = E[a++];

else
C[i++] = E[b++];

}
while (a <= mid)

C[i++] = E[a++];
while (b <= last)

C[i++] = E[b++];
for (int j = 0; j < C.length; j++)

E[first + j] = C[j];
} 18



Mergesort

Mergesort is O(n log n)

• Same order-class as the most efficient sorts (quicksort,
heapsort)

• Faster than Selection Sort, Bubble Sort, and Insertion sort
• Plug: Take CS 2150 and CS 4102 to study the efficiency of this
and other recursive algorithms!

• The Divide and Conquer approach matters, and in this case,
it’s a “win!”

19



Recursion

Recursion is a natural way to solve many problems

• Sometimes it’s a clever way to solve a problem that is not
clearly recursive

• Sometimes it produces an efficient solution (mergesort)
• Sometimes it produces a less efficient solution (fibonacci)
• Whether or not to use recursion is a design decision for your
“toolbox”

20



Recursion

Don’t forget the rules of recursion

• Identify one or more (simple) base cases that can be solved
without recursion

• Handle these FIRST in your code!

• Determine what recursive call(s) are needed to solve the
subproblems

• Note how to use the results to solve the larger problem
• Hint: At this step, don’t think about how recursive calls
process smaller inputs, just assume they work!

21


